Cubicat	tions for Circuit Breakers 12010 ECB	M Calculations	Affiliated Engineers
For purphas been open-c equiva	pose of fault en reduced to ircuit volta lent impeda	t calculation Thevenir ge and Th nce at fau	ion for ieries RL tate Response) n, network leguivalent evenin It location: Vth(t) = V(t) (t) = Vm sin(wt+q) m = Vmaximum) = angular frequency b = p hase
KVL: -Vct) Vct) Vm Siv	$\sum_{i} V_{LOOP} = \sum_{i} V_{LOOP} = \sum_{i$	0 =0 =dI(t) = RI(t)+1	$\frac{dI(t)}{dt}$

Fault Calculations for

Project
Application of Circuit Breakers

Subject
8/21/2010 ECB

□ To be Drawn
Page 2 of 33

□ To be Typed

☐ Note to the File

Calculations

Place first-order equation in proper form: LdI(t) + RI(t) = Vm sin (wt+0) $\frac{dI(t)}{dt} + \frac{R}{L}I(t) = \frac{V_m}{L}sin(\omega t + \phi)$ Method 1: Solve First-order equation using integrating factor y(t) = e SP(t) dt where equation is of the form dy + P(t) y = Q(t) y(t) = e S(E) dt = e (R/L)t multiply both sides of equation by integrating factor, e (8) t d I(t) + e (8) t & I(t) = e (8/2) t Vm sin (wt+4) $\frac{d}{dt}\left(e^{(\frac{g}{h})t}I(t)\right) = e^{(\frac{R}{h})t}V_{m}\sin(\omega t + \phi)$ Integrate both sides, e (%) t I(t) = Se (() t Vm sin (wt + 0) dt + C $T(t) = \frac{1}{e^{(\%)t}} \int e^{(\%)t} \int e^{(\%)t} \frac{V_m}{L} \sin(\omega t + \phi) dt + C$ I(t) = e-(E) + [Vm (Se (RL) + sin (w++ +) dt) + C

Fault Calculations For □ To be Typed Application of Circuit Breakers ☐ Note to the File Calculations 8/21/2010 ECB □ To be Drawn Page 3 of 33 Use trigonometric Identity

Sin (X+Y) = cos x sin y + cos y 5 in X $I(t) = e^{-(\frac{R}{L})t} \left[\frac{V_m}{L} \left(\int e^{(\frac{R}{L})t} (\cos \omega t \sin \phi + \cos \phi \sin \omega t) dt \right) + C \right]$ $I(t) = e^{-(\frac{9}{2})t} \int \frac{v_m}{L} \left(\int e^{(\frac{9}{2})t} \cos \omega t \sin \phi dt + \int e^{(\frac{9}{2})t} \cos \phi \sin \omega t dt \right) + C$ I(t) = e (RL)t \ \frac{Vm}{L} (sinp) \ e \ \cos \omega t \ dt + \ \cos \omega \ \ e \ \ \ \ \ \ \ \] From Table of Integrals, $\int e^{au} \sin bu du = \frac{e^{au}}{a^2+b^2} (a \sin bu - b \cos bu) + c$ Je au cosbudu = eau (a cosbu + b sinbu) + c So that, So that, $\frac{(RL)t}{-(RL)t} \left[\frac{V_m}{L} \left(\sin \phi \left(\frac{e}{(RL)^2 + \omega^2} \left(\frac{R}{L} \cos \omega t + \omega \sin \omega t \right) \right) \right) \right]$ $+ \cos \phi \left(\frac{e^{(RL)t}}{(RL)^2 + \omega^2} \left(\frac{R}{L} \sin \omega t - \omega \cos \omega t \right) \right) + C$ $I(t) = e^{-\binom{N}{L}t} \int \frac{V_m}{L} \cdot \frac{e^{\binom{N}{L}t}}{\binom{N}{L}^2 + \omega^2} \left(\frac{R}{L} \cos \omega t \sin \phi + \omega \sin \omega t \sin \phi \right)$ + Rsinwtcosp-wcoswtcosp) + C] $\underline{T(t)} = e^{-(\frac{R}{L})t} \int \underline{V_m} \cdot \frac{e^{(\frac{R}{L})t}}{L^{\frac{R}{L}(\frac{2}{L})^2 + \omega^2}} \cdot \left(\frac{R}{L} (\cos \omega t \sin \phi + \sin \omega t \cos \phi) \right)$ - w (coswtcosp - sinwt sind)) + C]

Fault Calculations for Project Application of Circuit Breakers Subject 8/21/2010 ECB

□ To be Drawn
Page 4 of 33

□ To be Typed

□ Note to the File
☑ Calculations

Use trigonometric Identities
$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$I(t) = e^{-(\frac{R}{L})t} \int_{-L}^{V_m} \frac{e^{-(\frac{R}{L})t}}{e^{\frac{R}{L}}} \int_{-L}^{R} \sin(\omega t + \phi) - \omega \cos(\omega t + \phi) + C$$

$$I(t) = \frac{V_m}{L} \cdot \frac{1}{e^{\frac{R}{L}}} \int_{-L}^{R} \sin(\omega t + \phi) - \omega \cos(\omega t + \phi) + Ce^{-(\frac{R}{L})t}$$

$$I(t) = \frac{V_m}{L} \cdot \frac{L^2}{R^2 + (\omega L)^2} \int_{-L}^{R} \sin(\omega t + \phi) - \omega \cos(\omega t + \phi) + Ce^{-(\frac{R}{L})t}$$

$$I(t) = \frac{V_m}{R^2 + (\omega L)^2} \left[R \sin(\omega t + \phi) - \omega L \cos(\omega t + \phi) \right] + Ce^{-(\frac{R}{L})t}$$

$$I(t) = \frac{V_m}{R^2 + (\omega L)^2} \left[R \sin(\omega t + \phi) - \omega L \cos(\omega t + \phi) \right] + Ce^{-(\frac{R}{L})t}$$

$$I(t) = \frac{V_m}{IZI^2} \left[R \sin(\omega t + \phi) - \omega L \cos(\omega t + \phi) \right] + Ce^{-(\frac{R}{L})t}$$

$$Assume that at $t = 0$, $I(0) = 0$ so that,
$$O = \frac{V_m}{IZI^2} \left(R \sin \phi - \omega L \cos \phi \right) + C$$

$$\Rightarrow C = -\frac{V_m}{IZI^2} \left(R \sin \phi - \omega L \cos \phi \right) + C$$

$$\Rightarrow C = -\frac{V_m}{IZI^2} \left(R \sin \phi - \omega L \cos \phi \right) + Ce^{-(\frac{R}{L})t}$$

$$I(t) = \frac{V_m}{IZI^2} \left[R \sin(\omega t + \phi) - \omega L \cos(\omega t + \phi) \right] - \frac{V_m}{IZI^2} \left(R \sin \phi - \omega L \cos \phi \right) \right]$$

$$I(t) = \frac{V_m}{IZI^2} \left[R \sin(\omega t + \phi) - \omega L \cos(\omega t + \phi) - e^{-(\frac{R}{L})t} \right]$$

$$I(t) = \frac{V_m}{IZI^2} \left[R \sin(\omega t + \phi) - \omega L \cos(\omega t + \phi) - e^{-(\frac{R}{L})t} \right]$$

$$I(t) = \frac{V_m}{IZI^2} \left[R \sin(\omega t + \phi) - \omega L \cos(\omega t + \phi) - e^{-(\frac{R}{L})t} \right]$$

$$I(t) = \frac{V_m}{IZI^2} \left[R \sin(\omega t + \phi) - \omega L \cos(\omega t + \phi) - e^{-(\frac{R}{L})t} \right]$$

$$I(t) = \frac{V_m}{IZI^2} \left[R \sin(\omega t + \phi) - \omega L \cos(\omega t + \phi) - e^{-(\frac{R}{L})t} \right]$$$$

Fault Calculations for Project Application of Circuit Breakers Subject 8/21/2010 ECB Project No. Date By

☐ To be Drawn

☐ To be Typed ☐ Note to the File □ Calculations

Use trigonometric Ide	entity
	a^2+b^2 sin $(x-tan^2b)$
derived from sin(x-0) as follows:)=sinxcose-cosxsine
asinx - bcosx = C	$sin(x-\theta) = sin x cos \theta - cos x sin \theta$
Let a = d cose	<i></i>
Let a = dcose b = dsin 0 c = dsin (x-0)	dsin(x-e)=dcostsinx-dsintcosx
$a^2+b^2=d\cos\theta+d\sin\theta$	asma of the second of the seco
$d = \pm \sqrt{a^2 + b^2}$	C = asin X - b cos X
$\frac{d\sin\theta}{d\cos\theta} = \frac{b}{a} = \tan\theta$ $\theta = \tan^{-1}\frac{b}{a}$	asinx-bcosx = $-t\sqrt{a^2+b^2}$ sin(x-0)
Case 1 (First term):	
$R \sin(\omega t + \phi) - \omega L c$	$\cos(\omega t + \phi)$
asin x - b a	
$\Rightarrow \pm \sqrt{R^2 + (\omega L)^2} \sin(\omega t -$	$+\phi-\theta$) $\theta=\tan^{-1}\frac{\omega L}{R}=\tan^{-1}\frac{X}{R}$
Case 2 (second term): R sin $\phi - \omega L \cos \phi$ a sin $x - b \cos x$	
$\Rightarrow \pm \sqrt{R^2 + (\omega L)^2} \sin(\Phi -$	1 -1 WL 2 -1 X

Fault Calculations For □ To be Typed Application of Circuit Breakers ☐ Note to the File *Calculations 8/21/2010 ECB □ To be Drawn Then, $I(t) = \frac{V_m}{|z|^2} \left[- \sqrt{\rho^2 + (\omega L)^2} \sin(\omega t + \phi - \theta) - e^{-(\frac{\rho L}{2})t} \right]$ but /Z/ = VR2+(WL)2 so that, $T(t) = \frac{\sqrt{m \cdot /2}}{|2|^2} \left[\sin(\omega t + \phi - \theta) - e \sin(\phi - \theta) \right]$ $T(t) = \frac{V_m \left[\sin(\omega t + \phi - \theta) - e \sin(\phi - \theta) \right]}{|z|}$ Finally, noting that, W = angular frequency (radians) \$ = phase angle (radians), also called closing angle θ = angle between voltage and current (radians) (cos θ = power factor) (system impedance) $\theta = \tan^{-1} \frac{\omega L}{R} = \tan^{-1} \frac{\chi}{R}$ I(t) = Vm sin(wt+0-0) - Vm e · sin(0-0) Decaying DC component Ac component Steady State Transient $\underline{I_{\text{max}}} = \frac{V_{\text{m}}}{|\mathcal{Z}|} = \frac{\sqrt{2} \, V_{\text{rms}}}{|\mathcal{Z}|} = \sqrt{2} \, \underline{I_{\text{rms}}}$ (each term)

Fault Calculations For Application of Circuit Breakers

8/21/2010 ECB

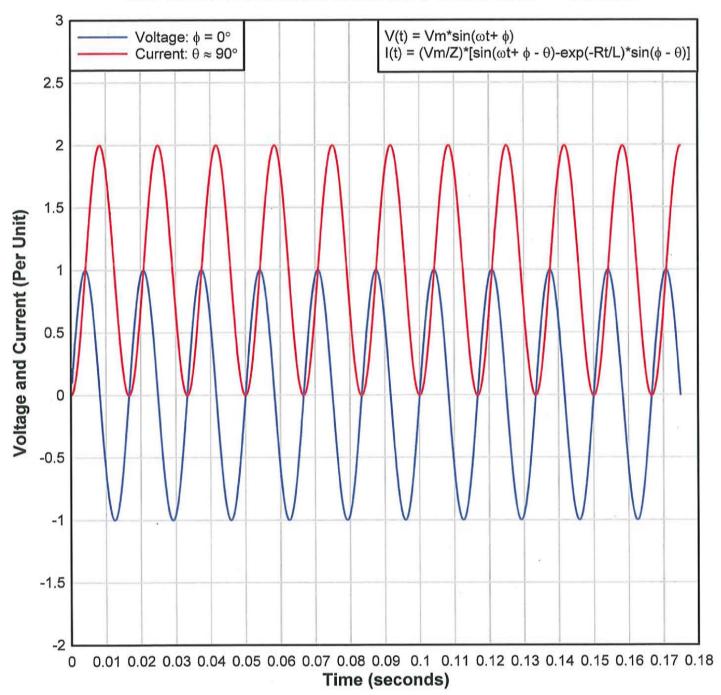
□ To be Drawn

□ To be Typed

□ Note to the File Calculations

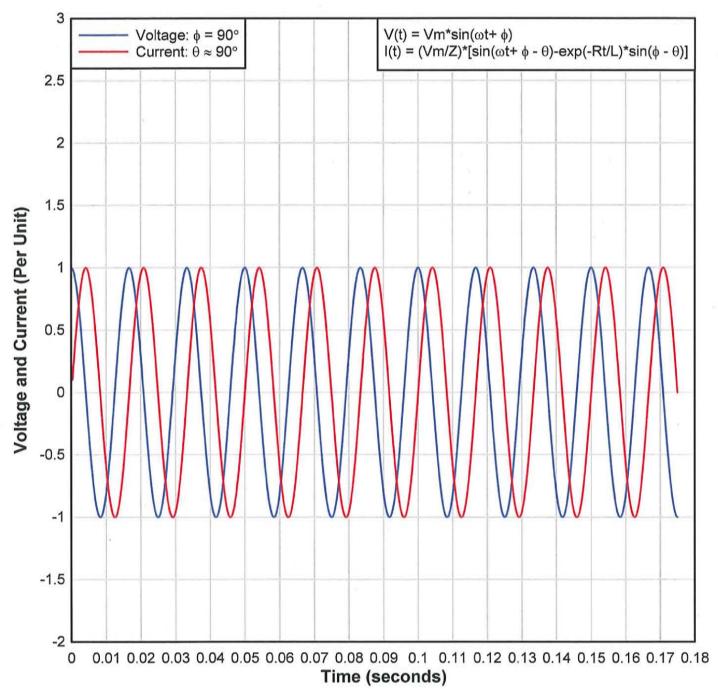
Method 2: Solve First-order equation Using Laplace Transforms $dI(t) + PI(t) = Vm sin(\omega t + \phi)$ From properties of Laplace Transform, I { dI(t) } (s) = 5 I(s) - F(0) 2 { I(t)}(s) = I(s) From Table of Laplace Transform Pairs, $2 \left\{ \sin(\omega t + \phi) \right\} (s) = \frac{s \sin \phi + \omega \cos \phi}{s^2 + \omega^2}$ Then $SI(s)-F(o^{-})+\frac{R}{L}I(s)=\frac{V_{m}}{L}\cdot\frac{S\sin\phi+\omega\cos\phi}{s^{2}+\omega^{2}}$ Assume that at t=0, T(0)=0 and F(0)=0 $5 I(s) + \frac{R}{L} I(s) = \frac{V_m}{L} \cdot \frac{5 \sin \phi + \omega \cos \phi}{5^2 + \omega^2}$ $I(5)[5+R] = \frac{V_{m}}{L} \cdot \frac{5 \sin \phi + \omega \cos \phi}{5^{2} + \omega^{2}}$ I(s) = 1 Vm. 55in \$\phi + \omega \cos \$\phi\$

L = 2 + (1) 2

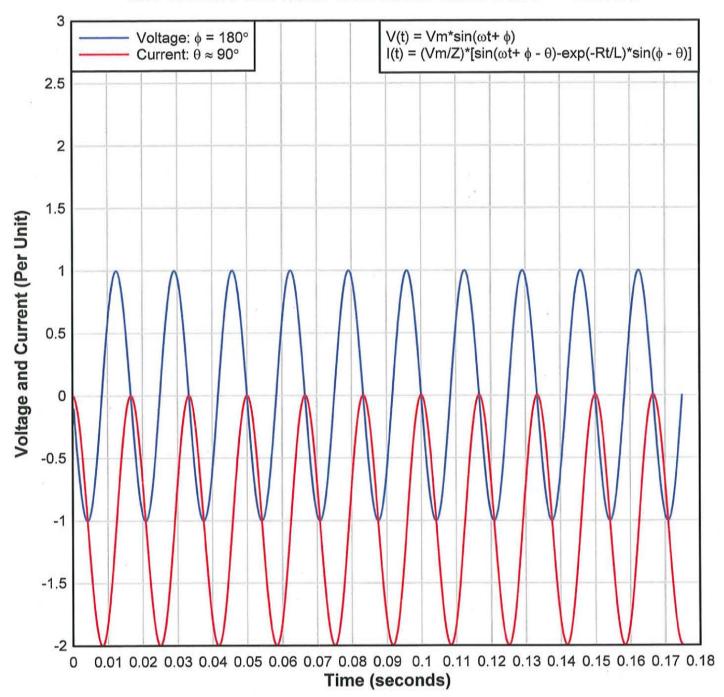

Fault Ca Project Applicati Subject Project No.	lculations on of Circu. 8/21/2010	for it Breakers ECB By	☐ To be Typed ☐ Note to the File ☑ Calculations ☐ To be Drawn Page 8 of 33	Affiliated Engineers
I(s) =	= Vm [5 (s	sinφ+ωc++ L)(52+	ω^2	
2-1	need to p	out equa	tion in pr	ce Transforms, oper form
the M	rethodor	Undeter	nined Co	ition and efficients: numerator is denominator
	" proper	form, no	long divisi	on reguired.
	guadrat coeffici I(s) = -	ic factor. ents Im [As	5 with ur + Βω + ω²	- and idetermined
Step 3:	Determ	ine coeff	cicients.	Set $\frac{P(s)}{Q(s)}$ and multiply to r
	5 sin 0+ (s+ 2)($\omega \cos \phi$ $s^2 + \omega^2$		$\frac{3\omega}{v^2} + \frac{C}{5+\frac{R}{2}}$ $(5^2 + \omega^2)$
5 sin	0+WC050	= (Hs + Da) $= A = 2 + A$	1 Es+Bw.	$S+B\omega \frac{R}{L}+CS^{2}+C\omega^{2}$

Project Application Subject Project No.	ation of Circuit Breakers 8/21/2010 ECB Date By Affiliated Engineers Calculations To be Typed Calculations To be Drawn Page 9 of 33
STEP	4: Equate powers of 5 to obtain 3 equations with 3 unknown 5
	$5^{\circ}: \omega \cos \phi = B\omega \frac{R}{L} + C\omega^{2}$
	5^{1} : $\sin \phi = A \stackrel{?}{\leftarrow} + B \omega$
	S^2 : $O = A + C$
Steps	E: Solve for coefficients using substitution
A:	A=-C
B:	$sin\phi = -C\frac{R}{L} + B\omega$
	$B\omega = \sin \phi + C\frac{R}{L}$
	$B = \frac{\sin \phi + CE}{\omega}$
6	$\omega\cos\phi = \omega \frac{R}{C}(\sin\phi + C\frac{R}{C}) + C\omega^2$
	\sim
	$\omega\cos\phi = \frac{R}{L}\sin\phi + C\frac{R^2}{L^2} + C\omega^2$
	$C\left(\frac{R^2}{L^2} + \omega^2\right) = \omega \cos \phi - \frac{R}{L} \sin \phi$
	$C = \frac{\omega \cos \phi - \frac{R}{L} \sin \phi}{\frac{R^2}{L^2} + \omega^2} = \frac{\omega L^2 \cos \phi - RL \sin \phi}{R^2 + (\omega L)^2}$
	$\frac{R^2}{L^2} + \omega^2$ $R + (\omega L)^2$
R.	$= \frac{\sin\phi + \frac{R\omega L \cos\phi - R^2 \sin\phi}{\omega (R^2 + (\omega L)^2)}}{\omega}$
A =	$\frac{RL\sin\phi - \omega L^2\cos\phi}{R^2 + (\omega L)^2}$
	$R^{-+}(\omega L)$

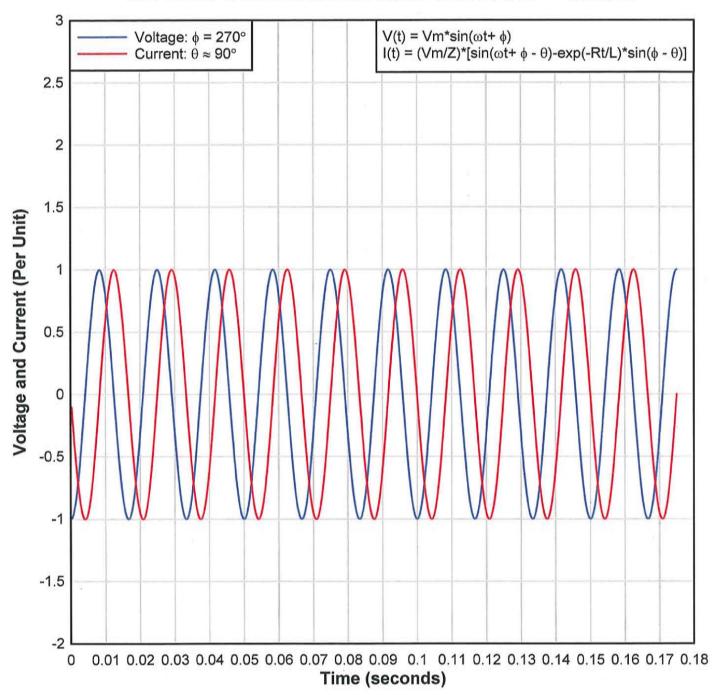
Applica	Calculation tion of Circu 8/21/2010	it Breakers	☐ To be Typed ☐ Note to the File ☐ Calculations ☐ To be Drawn Page 10 of 33	Affiliated Engineers
	$+\frac{\omega L^2 cos}{R^2+}$	$\phi - RL sin \phi$ $(\omega L)^2$	5+ <u>R</u>	$\frac{R\omega L\cos\phi - R^2\sin\phi}{\omega(R^2 + (\omega L)^2)/s^2 + \omega^2}$
J-15:	Table of a $\frac{5}{5^{2}\omega^{2}}(t) = \frac{\omega}{5^{2}+\omega^{2}}(t) = \frac{1}{5+\frac{R}{L}}(t) = \frac{1}{5+\frac{R}{L}$	= coswt	ransform So t	
Z ⁻¹ { I +	$\frac{ST(S)}{S}(t) = IC$ $\frac{Sin \omega t}{\omega} \left(\frac{Sin \omega}{\omega}\right)$ $\frac{-(R)t}{e} \left(\frac{\omega}{\omega}\right)$	$E = \frac{Vm}{L} \left[\frac{C}{C} \right]$ $\Phi_{+} = \frac{RWL \cos C}{W(R)}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	
	Vm [RL cos wto L R + RWLsin wtco w()			$sin\omega t sin\phi$ ω)t $\omega L^2 cos\phi - RL sin\phi$ $R^2 + (\omega L)^2$


	Calculations for tion of Circuit Breakers	☐ To be Typed☐ Note to the File☐ Calculations	Affiliated Engineers
Project No.	8/21/2010 ECB Date By	□ To be Drawn Page // of 33	
<u> </u>	Vm [w(RLcoswtsind-w2cos L [w(R2	sut $\cos \phi + (R + \omega^2 L^2)$	22+w21/sinutsino
+ Rwi	Lsinatcos ϕ -R ² sinatsin ϕ + ω ω (R ² + ω ²	-(%)t 2·(ω²L²cos(·L²)	p-RWL sin ()
	$ \frac{n \left[\omega R L \cos \omega t \sin \phi - \omega^2 L^2 \cos \omega \right]}{\omega \left(R^2 + \omega^2 L^2 \right)} $		
+ ω	0^2L^2 sinutsing + RWL sinutco $W(R^2+W^2L^2)$	$0.5\phi - R^2 \sin \alpha t$	Sin¢
	$-(\%) + (\omega^2 L^2 \cos \phi - R\omega L \sin \omega)$ $\omega (R^2 + \omega^2 L^2)$		2
I(t) = \frac{1}{2}	V_{m} $\int_{R} WL(sin\omega t cos\phi + cos\omega) L$ $\omega(R)$ t $\omega(R)$ t	$\frac{ tsin\phi +\omega z ^2}{ z^2+\omega^2z^2 }$ $R\omega L sin\phi$	(sinutsing-cosutcosq)
Using	+ ω (R²+ α trigonometric Identit	01 -	
5	in(X+Y) = sin X cos Y + C	osxsiny iny = -(siny)	x siny - cosx cosy)
<u>(</u> t)=	$\frac{V_m}{L} \left[\frac{R \omega L (\sin(\omega t + \phi)) - \omega^2 L}{\omega (R^2 + \omega)} \right]$	L2(cos(Wt+4)) +W2L2) _(RL)+	+e (wzcosp-Rwlsinp)
(t) = Vm	$\frac{\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \sum_$)-e (RWS W ² L ²)	inp-wzcosp)

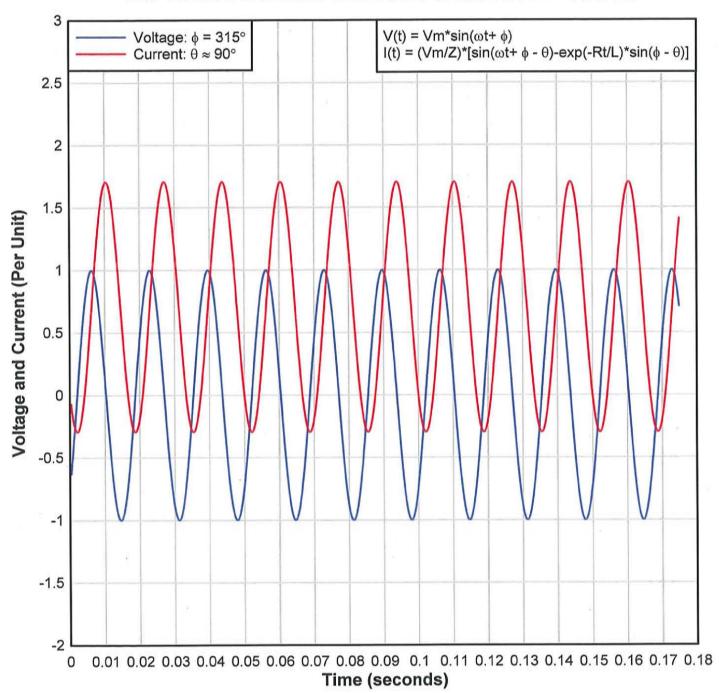
	ion of Cir			the File tions rawn	Affiliate Engine
I(t) = Vm	Rsin(wt+d)-WL cos (d	νt+Φ)-e ² +(ωL) ²	- (%)t (Rsin(D-WL COSG
11-1	trigonome nx-bcos	L. 7 1-	+++1		
$T(t) = \frac{1}{R^2}$	Vm / + (WL)2	+w22 sin(w	t+ (- () -	e _+VR2+u	1 ² 2 ² Sin(φ -
/z 工(t)=-	/= 1/22+w	$\frac{2L^2}{\sin(\omega t + c)}$	/= R+0 p-θ)-e	-(%)+ - 5in (φ-θ)]
I(t)	$= \frac{Vm}{12/L}$	- sin (wt+	∟ <i>φ−Θ</i>)-	-(%); -e :5	in (φ-e,


Notes:

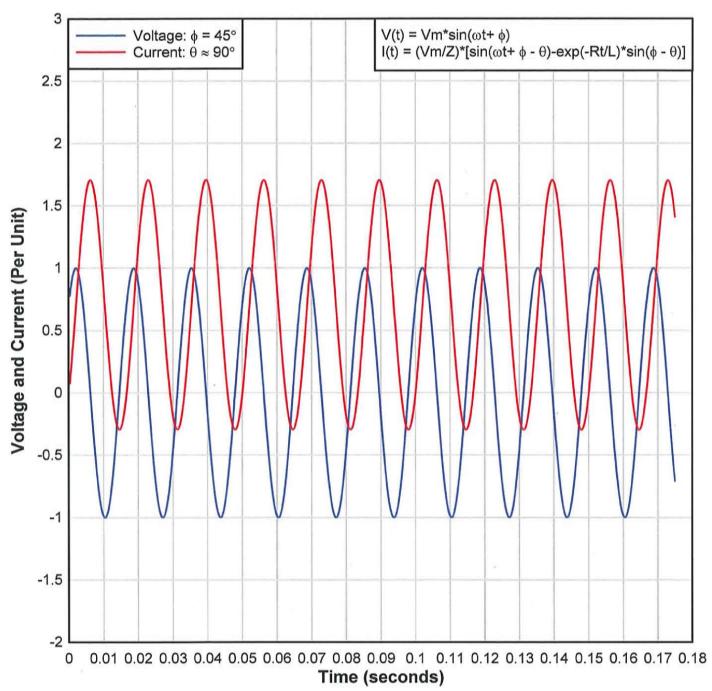
Produces maximum positive DC offset.


Notes:

No DC offset

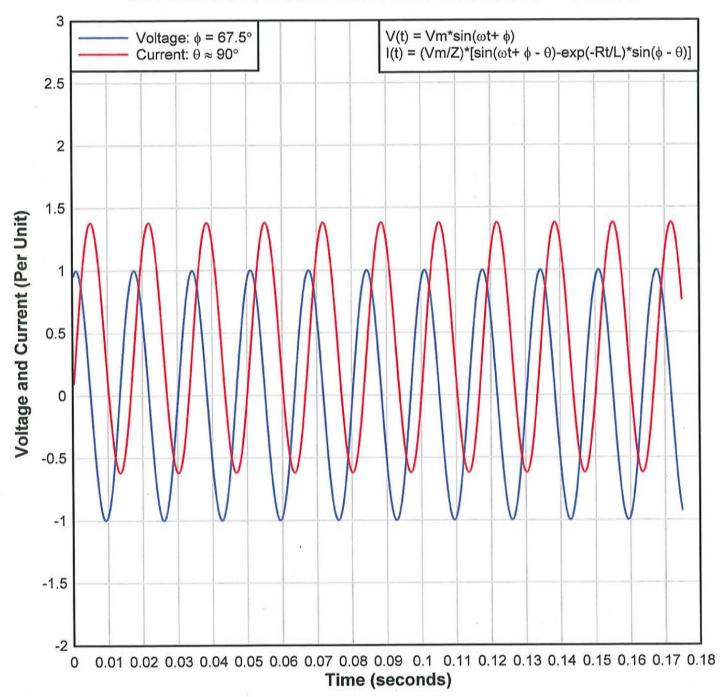

Notes:

Produces maximum negative DC offset.

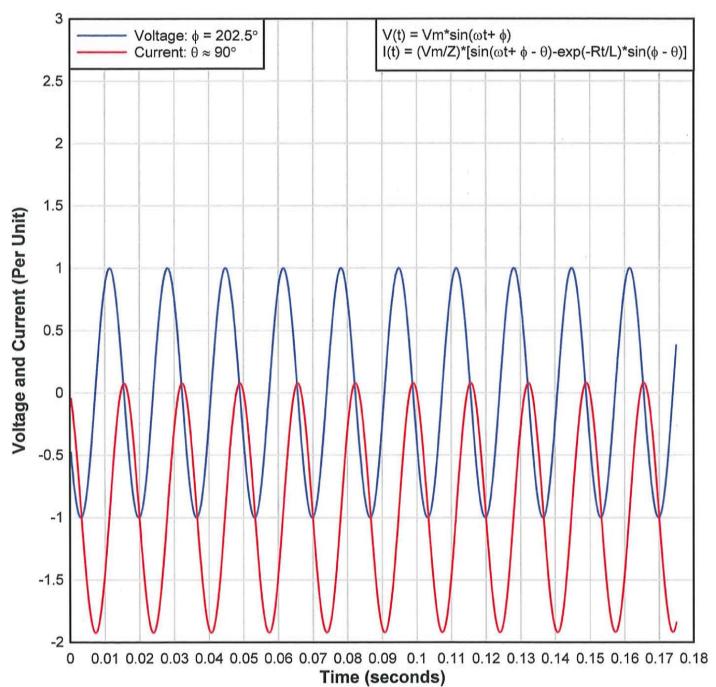


Notes:

No DC offset.

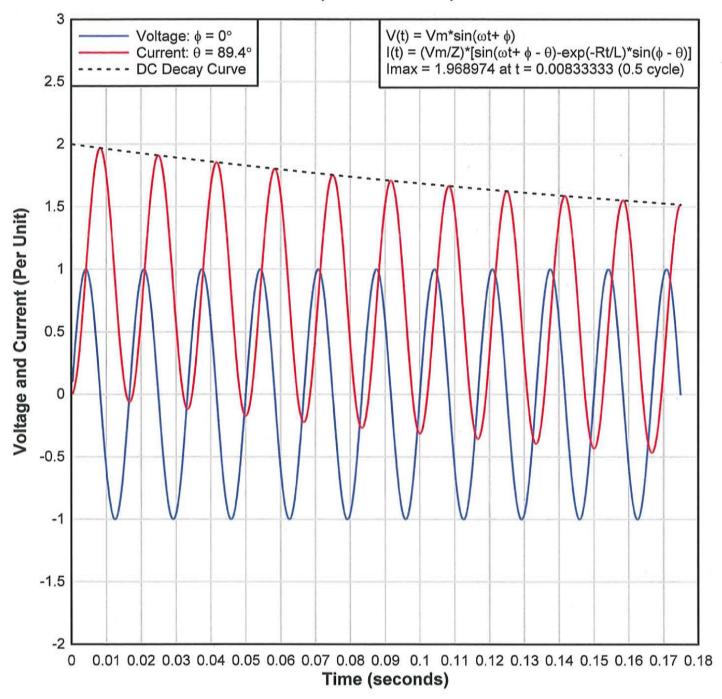


Notes: Intermediate positive DC offset.


Notes:

Intermediate positive DC offset.

Notes:


Intermediate positive DC offset.

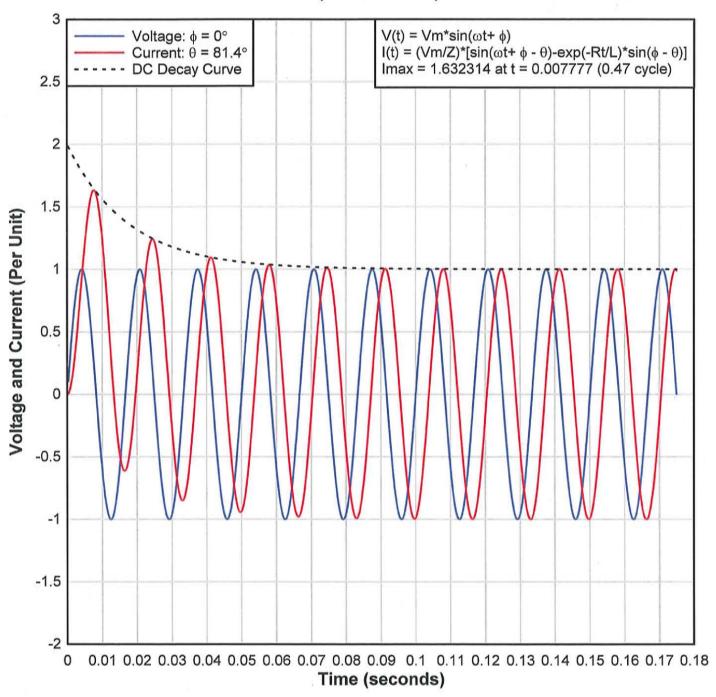
Notes:

Intermediate negative DC offset.


Effect of X/R Ratio on Short Circuit Current Voltage Closing Angle (Phase φ) = 0° X/R = 100, PF = .001, θ = 89.4°

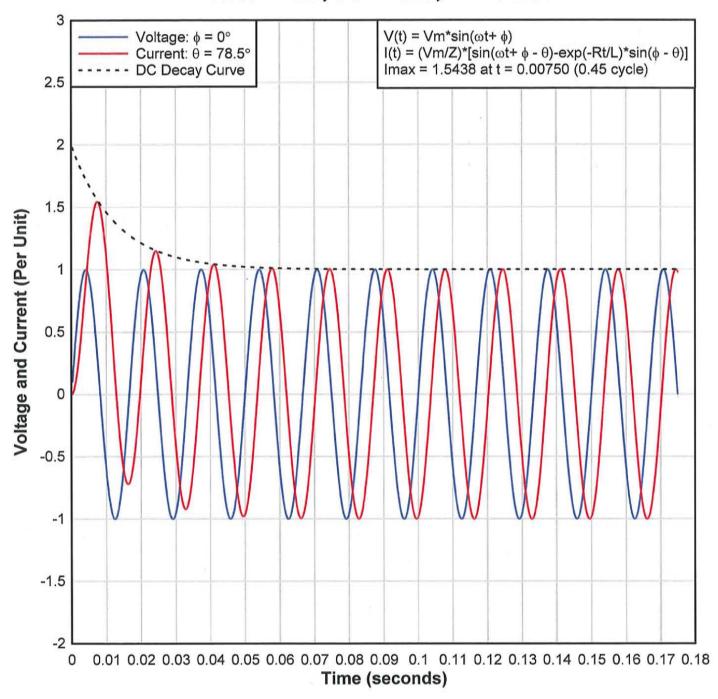
Notes:

DC decay takes many, many cycles. I peak at exactly 0.5 cycle.


Effect of X/R Ratio on Short Circuit Current Voltage Closing Angle (Phase φ) = 0° X/R = 25, PF = .04, θ = 87.7°

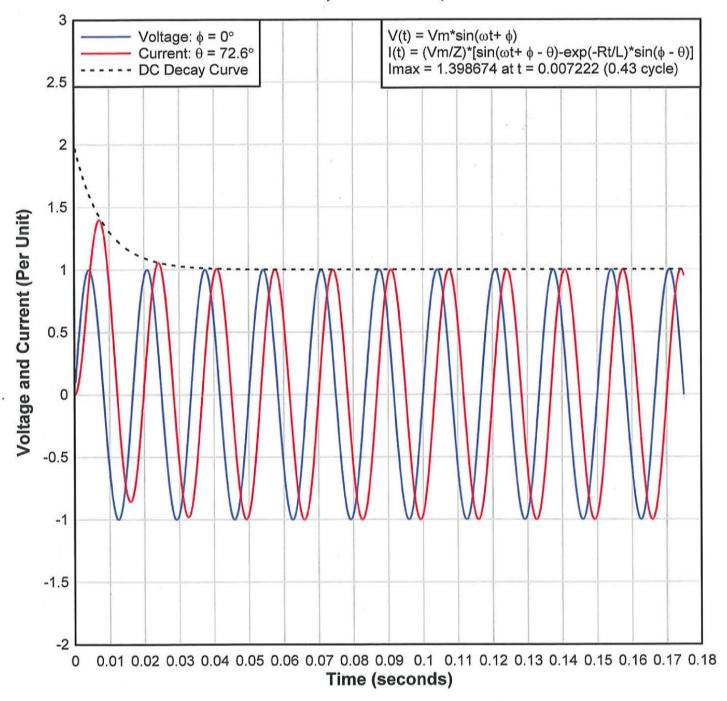
Notes:

DC decay takes several cycles. I peak at 0.48 cycle.


Effect of X/R Ratio on Short Circuit Current Voltage Closing Angle (Phase ϕ) = 0° X/R = 6.6, PF = .15, θ = 81.4°

Notes: DC decay only takes a few cycles.

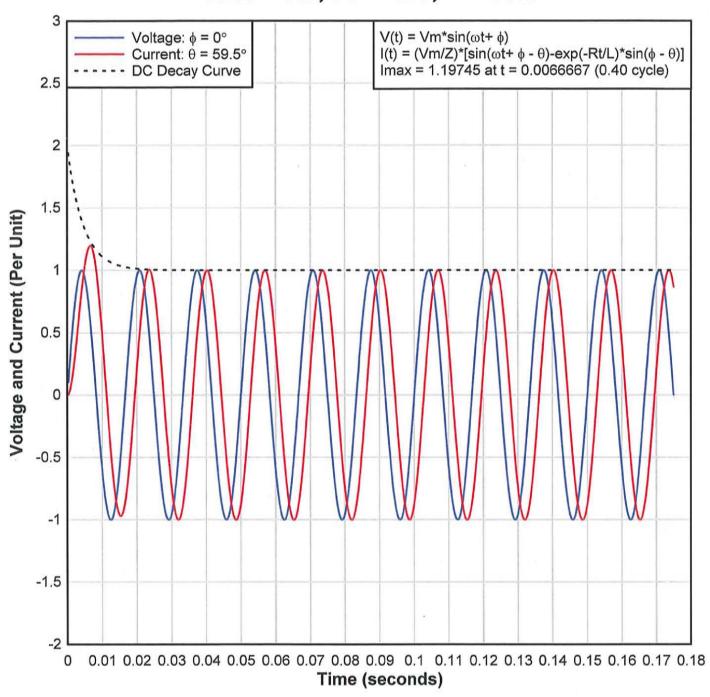
I peak at 0.47 cycle.


Effect of X/R Ratio on Short Circuit Current Voltage Closing Angle (Phase φ) = 0° X/R = 4.9, PF = .20, θ = 78.5°

Notes:

DC decay approx, 3 cycles. I peak at 0.45 cycle.

Effect of X/R Ratio on Short Circuit Current Voltage Closing Angle (Phase ϕ) = 0° X/R = 3.2, PF = .30, θ = 72.6°



Notes:

DC decay very guick.

I peak at 0.43 cycle.

Effect of X/R Ratio on Short Circuit Current Voltage Closing Angle (Phase φ) = 0° X/R = 1.7, PF = .50, θ = 59.5°

Notes:

DC decay in approx. 1 cycle. I peak at 0.40 cycle.

Fault Project Applica Subject Project No.	Calculations ation of Circ 8/21/2010	for vit Break ECB	To be Typed Note to the File Calculations To be Drawn Page 27 of 33	AEI Affiliated Enginee
0	Maximum D	C offse	preceding toccurs = 2.0 p.v.) and 0 the in other words ally induct	at voltage
2 I TI D	of there is nen the e C componen When the	s resistar xponenti t comes j Voltage P	nce in the al decay of nto play. Thase is set are varied tics are r	circuit, c the t to 0°
	a) Very h	igh X/R	ratios (≥10 s long and takes man	00), the
	one-ho For low decrea	t occurs alf cycle ser */ r ses, the	ratios - the nearly exertion the atios, as to peak current the formation	pault. he ratio ent occurs

X/R = 1.7

X/R = 100 I peak at t = 0.5 cycle X/R = 25 I peak at t = 0.48 cycle X/R = 6.6 I peak at t = 0.47 cycle X/R = 4.9 I peak at t = 0.45 cycle X/R = 3.2 I peak at t = 0.43 cycle

I peak at t = 0.40 cycle

Fault Calculations for ☐ To be Typed Application of Circuit Breakers Note to the File **Calculations** 8/21/2010 ECB ☐ To be Drawn Page 28 of 33

Project No.

(4) Maximum DC offset occurs at the zero crossing of the voltage wave form. At \$ = 0° The voltage is zero and increasing; this results in maximum positive DC offset. At 0 = 180° the voltage is zero and decreasing; this results in maximum negative DC offset.

5 For typical X/R ratios seen by faults in a distribution system (e.g. X/R < 10) the DC component decays within a few cycles.

6 EPRI research has shown that 60% of faults occur when voltage phase (closing angle) was within 5% of peak (angle 70-90°) thus yielding currents with DC offsets far below the theoretical maximum of 2.0 p.u. Lightning faults are a different story, [See Fig. 7.5 in Electric Power Distribution Handbook by T. A. Short].

The plots show that there are significant considerations involved when switching highly inductive loads or applying circuit breakers close to such loads such as in a substation with large transformers.

Fault Calculations for

Project No.

Application of Circuit Breakers

8/21/2010 ECB

□ To be Typed

Note to the File

*Calculations

☐ To be Drawn

Page 29 of 33

Implications for Application of Circuit Breakers

Fault calculations are performed primarily in phasor (frequency) domain and it would be impractical to perform time domain transient analysis for every application.

It is desirable to have a simple multiplier to apply to the rms symmetrical fault currents calculated in the phasor domain in order to compensate for the DC offset, e.g. the asymmetrical current or total rms current.

To this end, the time domain equation previously derived can be simplified for a quasi-worst-case scenario as follows:

- · Assume that the driving voltage for the Fault always occurs when $\phi = 0$, the zero crossing when voltage is increasing.
- · Assume that the argument (\$\phi \phi) of the sine functions always evaluate to \$\pm\$ \$\frac{\pi}{2}\$ or 90° to yield a 1.0 maximum multiplier (we use = \$\frac{\pi}{2}\$ to produce a positive DC offset).
- · Assume that the peak asymmetrical current occurs exactly one-half cycle into the fault.

Fault Calculations for □ To be Typed Application of Circuit Breakers ☐ Note to the File Calculations 8/21/2010 ECB ☐ To be Drawn Page 30 of 33 Modification of the equation: $I(t) = \frac{\sqrt{m}}{121} \left[\sin(\omega t + \phi - \theta) - e \cdot \sin(\phi - \theta) \right]$ t = 0.5 cycle = $0.5 \left(\frac{1}{F}\right) = \frac{0.5}{F} = \frac{0.5}{\omega/2\pi} = \frac{(0.5)2\pi}{\omega} = \frac{\pi}{\omega}$ $(\phi - \theta) = -\frac{\pi}{2}$ $I_{max} = \frac{V_m}{|\mathcal{Z}|} \left[\sin(\omega(\overline{\omega}) - \overline{\mathcal{Z}}) - e^{-(\mathcal{R}_{L}/\overline{\omega})} \right]$ Imax = \frac{\formation m}{\frac{1}{2}/\ Esign(\frac{\pi}{2})-e^{-\left(\frac{\pi/R}{4}\right)}\ \sin(-\frac{\pi/2}{2})] I max = $\frac{Vm}{121} \left[1 + e^{-\frac{\pi}{(X/R)}} \right]$ where $X = \omega L$ $I_{\text{max}} = \frac{V_{\text{m}}}{|Z|} + \frac{V_{\text{m}}}{|Z|} e^{-\frac{T}{(X/R)}}$ Imax = $\frac{\sqrt{2} \, V_{rms}}{|Z|} + \frac{\sqrt{2} \, V_{rms}}{|Z|} = \frac{\overline{T}}{(\times |R|)}$ Imax = V2Irms+V2Irms. e AC rms sym max DC offset current steady-state transient In this manner, simple adjustment for the transient asymmetry of the fault can be made using the rms sym fault current (phasor domain) and the system X/R

Fault Calculations for Project Application of Circuit Breakers Subject 8/21/2010 ECB Project No. Date By To be Typed Note to the File Calculations To be Drawn Page 31 of 33

Ipeak = VZ Irms	[1+e	CXIR)
		accepted approximation an approximation ac. Power Dist. Handbook]
AC Power Circuitoreakers rated	t Breakers based on	C37.13 (Low Voltage) for unfused peak current:
Unfused breaker down to power for ratio of 6.6).	s are ratactor of,	ed and tested 15% (up to X/R
obtain a multip rms currents a	lying factor	(MF) to apply to atios higher than on to $X/R = 6.6$).
G.G (e.g. normal	1/2 Tobs [1+	~ (X/R) \ \\ \Z \[\] + e \(\frac{\tau_{(R)}}{\text{\text{\$\infty}\$}} \]
MF= Ipeak _ migher _ Teak _ X/R = 6.6	V2 Irms [1+	e (X/R)] = VZ[1+e (X/R)] -e 76.6) = 2.29
	recreate Ta it breaker	able 3 in ANSI/IEEE C37.13 5:
System Short-Circuit Power Factor %		Multiplying Factor For Calculated rms sym Fault current
15	6.6	1.00
12	8.27	1,04
10	9.95	1.07
8.5	11.72	1.09
7	14.25	1.11,
5	20.0	1.14

Application Subject	lculations for or Circuit 8/21/2010	t Breakers	☐ To be Typed ☐ Note to the File ☐ Calculations ☐ To be Drawn Page 32 of 33	Affiliated Engineers
rated b	pased on	-/IEEE (eakers) for total rms from C37	current (as	incuit breakers symmetrical):
			+ (IDC compone	
	annatus at market and the	$(+)^{2} + (\sqrt{2} I_{rm})^{2} + 2I_{rms}^{2} = (-2)^{2}$		Dc component From simplified equation
		1+2e-27/R		
I total rms asym	= Irms·l	1+20-3	TXIR)	
				sted down ratio of 4.9).
obtain sym cur (e.g. nor	a multiply rents wit malize equ	ring factor h X/R rativation to X	MF) to approximately MF) to approximately MF = 4.9).	pply to rms than 4.9
MF = Tto	otal =higher = I tal = Ir	ms V1+2e	2 T (X/R) = 1/	+2e-7x/R)

Fault Calculations for

Project

Application of Circuit Breakers

Subject

8/21/2010 ECB

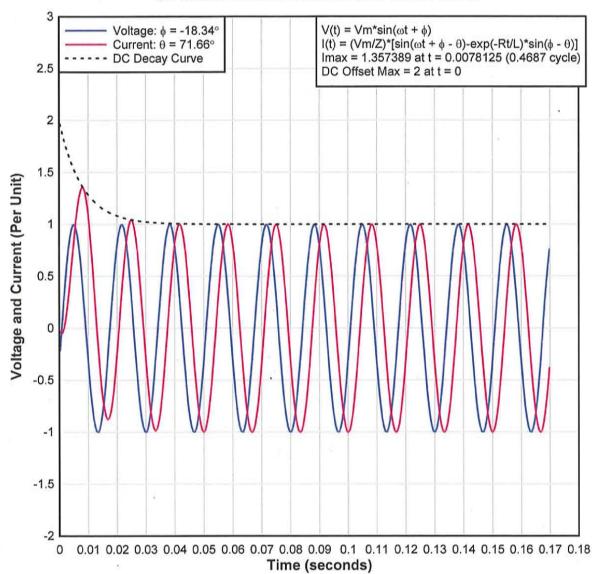
To be Typed

Note to the File

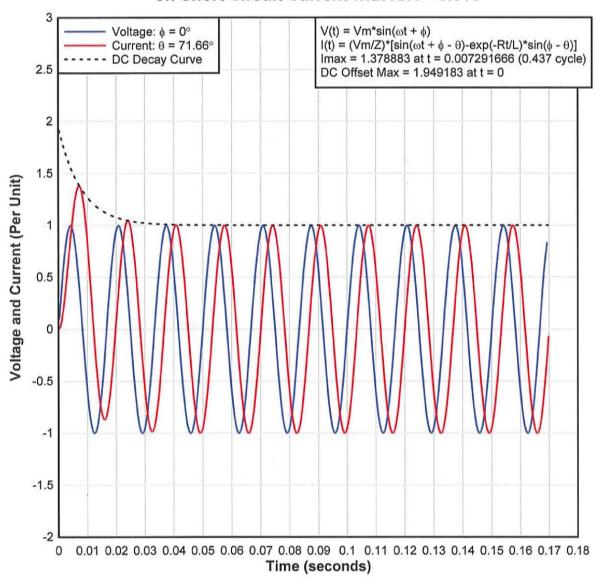
Calculations

Project No.

Date


By

Page 33 of 33



oject ivo.	- Date	Бу	rageoi	
Use	this eg	vation to	recreate	Table
	1-10-1-4	TE (27 17	0 - 0 1	'_

System Short-Circuit Power Factor %	System X/R Ratio	Multiplying Factor Calculated rms sym f	ault curren
20	4.9	1.00	
15	6.6	1.07	
/2	8.27	1.12	
	9.95	1.15	
8.5	11.72	1.18	
	14.25	1.21	
5	20.0	1.26	
			marjanananan en

Notes: When $(\phi - \Theta)$ is 90° and ϕ is not 0°, maximum DC offset of 2.0 pv is produced, but does not result in maximum possible value of current.

Notes: Maximum value of current is only produced when $(\phi - \theta)$ is $\pm 90^{\circ}$ and $\phi = 0^{\circ}$ or $\phi = 180^{\circ}$

pplicat Subject	ilculations for ion of Circuit 9/4/2010	t Breakers	☐ To be Drawn	Affiliated Engineers
Using	generals	Solve Fi	method F	r Equation or linear
General is the	ral solution re sum of	of an solution	inhomoge is to hom	stant coefficients neous equation ogeneous lar integral, alue problem.
	mogeneous e tion to Ho			$t) = \frac{V_m}{L} \sin(\omega t + \phi)$
Hor	nogeneous e	guation:	$\frac{dI}{dt} + \frac{R}{L}$	I(t) = 0
	characterist	ic polynomi	single	$)=0$ $r=-\frac{R}{L}$ (simple) root multiplicity 1
71 is	he general so of the f $T(t)_h$	olution (co corm, = C, e	omplimentar)t	Y Function)
				(cont.)

Fault Calculations for Application of Circuit Breakers 9/4/2010 ECB

Project No.

☐ To be Drawn Page 2 of 7

□ To be Typed

Calculations

Solution to Particular Integral By the Method of Undetermined Coefficients For inhomogeneous equation, $\frac{dI}{dt} + \frac{RI(t)}{L} = \frac{Vm}{L} \sin(\omega t + \phi)$ solution to particular integral is of the form $T(t)_p = C cos(\omega t + \phi) + D sin(\omega t + \phi)$ since cos(w++0) and/or sin(w++++) are not contained in the complementary function (they are not solutions to the homogeneous equation). To determine coefficients C and D, substitute I(t), into original inhomogeneous equation: $\frac{dI(t)p}{dt} + \frac{R}{L}I(t)p = \frac{Vm}{L}\sin(\omega t + \Phi)$ - w Csin (wt+0)+ w D cos (wt+0)+ R Ccos (wt+0)+ R Dsin (wt+0)= Vmsin (wt+0) Equate coefficients of corresponding terms on either side of the equation: $-\omega C + \frac{R}{L}D = \frac{Vm}{I}$ Coefficients of sin(w+++): $\omega D + \frac{R}{L}C = 0$ Coefficients of cos(wt+0): Solve for coefficients, WD = - RC => D = - RC - WC + R (-RC) = Vm (cont.)

Fault Calculations for □ To be Typed Application of Circuit Breakers ☐ Note to the File Calculations 9/4/2010 ECB ☐ To be Drawn Page 3 of 7 Project No. $-\omega C - \frac{R^2}{\omega L^2} C = \frac{Vm}{I} \Rightarrow C = \frac{Vm}{L} \left(\frac{I}{-\omega - R^2} \right) = \frac{-Vm \cdot \omega L^2}{L(R^2 + \omega^2 L^2)}$ $C = \frac{-Vm \cdot \omega L}{R^2 + (\omega L)^2} D = \frac{-R}{\omega L} \left(\frac{-Vm \cdot \omega L}{R^2 + (\omega L)^2} \right) = \frac{Vm \cdot R}{R^2 + (\omega L)^2}$ Then, $I(t)_p = \frac{-V_m \cdot \omega L}{R^2 + (\omega L)^2} \cos(\omega t + \phi) + \frac{V_m \cdot R}{R^2 + (\omega L)^2} \sin(\omega t + \phi)$ and general solution to inhomogeneous equation is of the form, $I(t) = I(t)_h + I(t)_p$ $I(t) = C, e^{-\binom{R}{L}t} - \frac{V_{M} \cdot \omega L}{R^{2} + (\omega L)^{2}} \cos(\omega t + \phi) + \frac{V_{M} \cdot R}{R^{2} + (\omega L)^{2}} \sin(\omega t + \phi)$ Find solution to Initial Value Problem Assume that at t=0, I(0)=0 so that, $0 = C_1 - \frac{V_m \cdot \omega L}{R^2 + (\omega L)^2} \cos \phi + \frac{V_m \cdot R}{P^2 + (\omega L)^2} \sin \phi$ $C_1 = \frac{Vm}{\rho^2 + (\omega L)^2} (\omega L \cos \phi - R \sin \phi)$ The (complete) general solution is now, $I(t) = \frac{Vm}{R^2 + (\omega L)^2} (\omega L \cos \phi - R \sin \phi) e^{-\frac{R}{L}t} \frac{Vm}{R^2 + (\omega L)^2} \left[\omega L \cos (\omega t + \phi) - R \sin (\omega t + \phi) \right]$ Rearranging and simplifying: R2+(WL)2 = /Z/2

Project Pplication	Iculations pon of Circuit 9/4/2010	Breakers	☐ To be Typed ☐ Note to the File ☐ Calculations ☐ To be Drawn	Affiliated Engineers
Project No.	Date	Ву	Page 4 of 7	
I(t) = -7 I(t) = -7	Vm [(WLCOS¢) Vm Rsin(Wt-	-Rsinφ)·e +φ)-ωLcos(α	-(ξ)t -[w1cos(w -(ξ ut+φ)-e	vt+q)-Rsin(wt+q)]] B)t (Rsin q-WLCOSQ)]
Process Brown Brown Street				
Apply -	trigonometric	2 identity	y,	
as	sinx-bcosx	$c = \pm \sqrt{a^2 + b^2}$,2. sin (x-t	$\tan^{2}\frac{b}{a}$, $\theta = \tan^{2}\frac{b}{a}$
I(t) = \frac{\fin}{\fint}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}{\frac{\fir}{\fir}}}}}}{\frac{\frac{\frac{\frac{\frac}{\frac{\frac{\fir}{\fir}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}{\firighta}}}{\firan{\frac{\f{\frac{\frac{\f{\f{\f{\f{\frac}	$\frac{m}{2} \left[-\sqrt{R^2 + (\omega L)^2} \right] $	n (wt+\$-6).	-(E) E -e · ± VR3+(0	$\frac{1}{(1+\alpha)^2}\sin(\phi-\theta)$
7/	$\frac{(\omega L)^2}{(\omega L)^2} = \frac{(\omega L)^2}{(\pi l^2)^2} = \frac{12l^2}{(\pi l^2)^2}$	/2/		
Final	14)		CRI	
エ(せ)	$= \frac{V_m}{Z} \left[\sin \frac{1}{2} \right]$	(ωt+φ-	e)-e·s	$\sin(\phi-\theta)$

Application	ulations for n of CircuitBreak 9/4/2010 ECB Date By	Pealculations	Affiliated Engineers
		first-order equal steady-State comp for steady-state source.	
From p	property of lir	Fig. 1. And the second of the	
Transi		$O + \frac{V_m}{L} sin(\omega t + $	
<u>d</u>	I+RI(t)=	n (Forced Response - Vm sin (ωt+φ) + T(ω)	
To to Solut	tion solution	steady-state solution	
NoTe:	Specific solution	not yet incorporate to initial value pr	oblem

	ations for of Circuit Breakers 9/4/2010 ECB Date By	☐ To be Typed ☐ Note to the File ☐ Calculations ☐ To be Drawn Page 6 of 7	ed eers
characte I	sient Component dI + RI(t) = 0 it $t = 0$ ristic polynomial: $I(t)_{TR} = C_1 e$ $I(t)_{TR} = C_1 e$	$r+ \frac{R}{L} = 0$ $r = \frac{-R}{L}$ 2) t single (simple multiplicity)	-) root
since for the photon did dt	rcing function (asor method can $E + \frac{R}{L} I(t)_{ss} = \frac{Vr}{L}$	Ac source) is a sinus be used: sin(wt+p)	
dI + dt + Express	$\frac{R}{L} I(t)_{ss} = \frac{Vm}{L}$ with phasor e		
jω∓	$\begin{array}{cccc} + & P & T & - & V_{m} & \Rightarrow & \\ \omega L) & = & V_{m} & \Rightarrow & T \\ P & \Rightarrow & T & - & V_{m} \\ P & \Rightarrow & T & - & V_{m} \\ Z & \Rightarrow & T &$	$j\omega L \widetilde{T} + R \widetilde{T} = V_{m}$ $= V_{m}$ $= R + j\omega L$ $= V_{m} / \phi - \overline{\Xi}$ $= Z / \Theta$	tan &L
		(cont.)	

Fault Calculations for Project Application of Circuit Breakers 9/4/2010 ECB

Convert back to time domain: Tejut = Re & Vmei(0-0-=) jut? I(t) = Vm cos(wt+0-0-=) or I(t)= Vm sin (at+0-0) Total Solution is now, $I(t) = C_1 e^{-\left(\frac{E}{E}\right)t} + \frac{V_m}{171} \sin(\omega t + \phi - \phi)$ Now must solve for initial conditions. Note that at t=0+ $I(0^{\dagger}) = C_1 + I_{ss}(0^{\dagger}) \Rightarrow C_1 = I(0^{\dagger}) - I_{ss}(0^{\dagger})$ General form of total solution is given by, $I(t) = [I(0^{+}) - I_{ss}(0^{+})]e^{-(\%)t} + I(t)_{ss}$ In this case, I(o+)=0 at t=o+ so that, $0 = C_1 + \frac{\sqrt{m}}{12l} \sin(\phi - \theta) \Rightarrow C_1 = -\frac{\sqrt{m}}{12l} \sin(\phi - \theta)$ Then, $I(t) = -\frac{\sqrt{m}}{|z|} \sin(\phi - \theta) \cdot e^{-\left(\frac{R}{L}\right)t} \frac{\sqrt{m}}{|z|} \sin(\omega t + \phi - \theta)$ $I(t) = \frac{\sqrt{m} \int \sin(\omega t + \phi - \theta) - e^{-\frac{(R)t}{2}}}{|Z|} \int \sin(\omega t + \phi - \theta) - e^{-\frac{(R)t}{2}}$

☐ To be Typed

☐ Note to the File

Calculations