The Relay Testing Handbook: Generator Protection Relay Resting – Update

The draft of our next book on generator relay testing is finally complete. If you want to learn the ins and outs of generator protection relay testing, this is the book for you.

I started writing it 775 days (2 years, 1 month, 13 days) ago. It was supposed to be finished in one year. The final draft has a LOT of information, including:

  • 1,022 pages in the draft version (which means the final version will probably be close to 1,200 pages long.)
  • 29 chapters
  • 4 appendixes
  • 534 figures (not including calculations)
  • 286,624 words
  • 1,474,163 characters (not including spaces)
  • 29,517 paragraphs, and
  • 47,401 lines

The maximum page count in a physical book is 800 pages.  That means that there will be two versions of the book. Everyone who buys a physical copy will get both versions, of course.

The work isn’t done.  We still have to:

  • Edit the draft
  • Apply the final layout
  • Review the final layout
  • Complete another round of edits
  • Figure out how we’ll cut the print version down to 800 pages
  • Review the proofs from the printers
  • Order the final copies.

We expect to release the book for sale in July 2020.  Be sure to sign up to our mailing list below to get a notification when the book is released.

We’ll be sending a copy of the Differential-Element (87) Testing chapter of this book to all existing owners of The Relay Testing Handbook: Principles and Practice to show them how to automate the theory and techniques presented in  Principles and Practice.

Here is the Table of Contents and Table of Figures from the draft copy so that you can see what to look forward to:

Table of Contents

  1. Introduction to Generators 36
    • The Prime Mover 39
    • The Generator Stator 45
    • The Generator Rotor 47
    • Generator Grounding 47
      • a) Ungrounded Generators 49
      • b) Solidly/Effectively Grounded Generators 51
      • c) Low-Impedance Grounded Generators 52
      • d) High-Impedance Grounded Generators 52
      • e) Distribution Transformer Grounded Generators 54
    • Power System Faults 55
    • Generator Faults 58
    • Generator Constants 59
  2. Generator Control Systems 64
    • Governor Control in Solo Generator Systems 64
    • Voltage Control in Solo Generator Systems 72
    • Governor Control in Small Generating Systems 78
    • AVR Control in Small Generating Systems 84
    • Governor Control on a Large Grid 87
    • Excitation Control on a Large Grid 89
    • Synchronizing Generators 91
      • f) Frequency 91
      • g) Voltage 92
      • h) Phase Angle 93
      • i) Breaker Closing Time 93
      • j) Manual Synchronizing Procedure 95
      • k) Automatic Synchronizing (25A) Procedure 97
    • Revenue Meters 99
    • Generator Relays 103
      • a) Phase Distance Elements (21) 106
      • b) Volts/Hertz (V/Hz) Over-Excitation Elements (24) 107
      • c) Synchronizing and Sync-Check Elements (25) 107
      • d) Under-Voltage Elements (27) 108
      • e) Third-Harmonic Under-Voltage / 100% Stator Ground Elements (27TH/64G) 109
      • f) Reverse Power Elements (32) 110
      • g) Loss-of-Field Elements (40) 110
      • h) Negative-Sequence Over-Current Elements (46) 111
      • i) Inadvertent-Energization Elements (50/27) 112
      • j) Breaker Failure (50BF) 113
      • k) Voltage-Controlled Over-Current (51VC) 114
      • l) Voltage-Restrained Over-Current (51VR) 115
      • m) Over-Voltage Elements (59) 116
      • n) Neutral Over-Voltage Elements (59N/64G) 116
      • o) Out-of-Step Elements / Loss-of-Synchronism (78) 117
      • p) Over/Under-Frequency Elements (81) 118
      • q) Differential Elements (87) 120
    • More Resources 120
  3. Generator Diagrams 122
    • Waveforms 122
    • Phasor Diagrams 125
    • Impedance Drawings 127
    • Power (PQ) Drawings 131
    • Generator Capability Curves 136
  4. Getting Ready to Test 140
    • Generator Nameplate 141
      • a) Current 141
      • b) Voltage 141
      • c) Frequency 142
      • d) Capacity 142
      • e) Power Factor 142
      • f) Rating 143
      • g) Relay Settings 143
    • Single-Line Drawing 143
      • a) T. Secondary Rating 145
      • b) T. Neutral Ratio / CTR 145
      • c) T. Phase Ratio / CTRD 146
      • d) T. Phase Ratio / PTR 146
      • e) T. Neutral Ratio / PTRN 146
      • f) System Phase Sequence / PHROT 146
    • Three-Line Drawings 147
      • a) CT Secondary Rating 148
      • b) T. Neutral Ratio / CTR / C.T. Phase Ratio / CTRD 148
      • c) T. Phase Ratio / PTR 148
      • d) T. Neutral Ratio / PTRN 148
      • e) System Phase Sequence / PHROT 148
      • f) T. Configuration / DELTA_Y 148
    • Determine the Correct Neutral PT Direction from Three-Line Drawings 149
    • Determine the Correct Neutral CT Direction from Three-Line Drawings 151
    • Determine the Phase CT Direction from Three-Line Drawings 154
    • Schematic Drawings 154
    • Connecting Your Test-Set 157
    • Replace Current Transformer Connections between Test-Set and Relay 157
    • Replace Wye PTs between Test-Set and Relay 159
    • Replace Delta-Connected PTs between Test-Set and Relay 160
    • Replace Neutral Grounding Transformer Signals between the Test-Set and Relay 160
    • Relay Outputs to Test-Set Inputs 161
    • Relay Inputs to Test-Set Outputs 162
    • How to Create Realistic Fault Simulations 165
      • a) How to Create Three-Phase Fault Simulations 167
      • b) How to Create Phase-Phase Fault Simulations 169
      • c) How to Create Phase-Ground Fault Simulations 171
      • d) Fault Simulation Calculations 173
  5. Element Testing Principles 176
    • Nominal Current Calculations 176
    • Nominal Phase-Phase Voltage Calculations 178
    • Nominal Phase-Neutral Voltage Setting Calculations 179
    • Nominal Phase-Neutral Voltage Test-Set Output 179
    • Energized and Offline Test State 179
    • Energized and Online Test State 181
    • Pickup Tests 183
    • Timing Tests 187
    • Breaker Status Blocking Tests 188
    • Loss-of-Potential (60, 60LOP, LOP) Blocking Tests 189
    • Evaluating Results 190
    • Review the Relay Response 192
      • a) Turn on an LED 192
      • b) Display a Message 193
      • c) Add Information to a Sequence of Events Report 193
      • d) Record an Oscillography Report 193
    • Dynamic Pickup/Timing Tests 193
      • a) Omicron Test Universe 197
      • b) Doble Protection Suite 197
      • c) Manta Front Panel 197
      • d) No-Pickup Test Procedure for Enoserv RTS and Other Software 198
      • e) Pickup Test Procedure for Enoserv RTS and Other Software 198
      • f) Timing Test Procedure for Enoserv RTS and Other Software 199
      • g) LOP Block Test Procedure for Enoserv RTS and Other Software 199
      • h) Breaker Block Test Procedure for Enoserv RTS and Other Software 200
    • Dynamic Pickup/Timing Test Template for Generator Relay Testing 201
      • a) Connect All Relay Outputs Set to Operate to Test-Set Inputs 201
      • b) Review the Relay Inputs 201
      • c) Apply an Energized and Offline State 202
      • d) Apply an Online State 202
      • e) Apply an LOP State 203
      • f) Apply an LOP Block Test State 204
      • g) Apply an Online State 205
      • h) Apply a Breaker Block Test State 206
      • i) Apply an Online State 207
      • j) Apply a No-Pickup State Outside the Expected Tolerance 208
      • k) Apply an Online State 209
      • l) Apply a Pickup State Outside the Expected Tolerance 210
      • m) Apply an Online State 211
      • n) Apply a Timing Test State Outside the Expected Tolerance 212
      • o) Apply a Postfault State for Better Targeting 213
      • p) Apply a Postfault State to Prevent Other Elements Operating After Test 214
      • q) Evaluate and Record Your Test Results 214
    • Logic Testing 215
    • What to Do When the “Wrong” Element Operates During a Test 215
  6. Acceptance Testing 218
    • Self-Test 218
    • Digital Outputs 219
    • Digital Inputs 219
    • Analog to Digital Converters (CT/PT Inputs) 219
      • a) Phase Angles 219
      • b) Testing Wye Voltages 221
      • c) Testing Current with Wye Voltages 222
  7. Commissioning Tests 224
    • Meter Tests with a Wye Connection 225
    • Meter Tests with a Three-Phase Delta Voltage Connection 225
    • Current Meter Test with Delta Voltages 231
    • Verify Phase Direction during a Meter Test 237
    • Verify Phase Rotation during a Meter Test 239
    • Verify Phases during a Meter Test 240
    • Verify Differential Metering 241
    • Digital Outputs 243
    • Digital Inputs 247
    • Element Testing 247
      • a) Understand the Basic Operation of the Element 247
      • b) Choose the Appropriate Fault Type 248
      • c) Perform a Pickup Test 248
      • d) Perform a Timing Test 251
    • Verify the Relay Logic Schemes 252
    • Clear all Monitoring Functions 253
  8. Maintenance Tests 254
  9. Testing Phase Distance / Phase Distance Elements (21) 256
    • Review the Phase Impedance Settings and Specifications 259
      • a) Delta-Y Transform / Z1CMP / Z2CMP Setting      260
      • b) EBUP Setting 260
      • c) Circle Diameter #1 / Circle Diameter #2 / Circle Diameter #3 Setting 260
      • d) Z1R / Z2R Setting 260
      • e) Offset #1 / Offset #2 / Offset #3 / Z1O / Z2O Setting 261
      • f) Impedance Angle #1 / Impedance Angle #2 / Impedance Angle #3 / MTA1 / MTA2 Setting 261
      • g) Time Delay #1 / Time Delay #2 / Time Delay #3 / Z1D / Z2D Settings         263
      • h) Blocking Inputs / 21PTC 263
      • i) Outputs / Trip, Close, ER, Output Elements 264
      • j) Load Encroachment / MPF / MXLD Settings 265
      • k) Overcurrent Supervision Setting 266
      • l) Out-of-Step Settings 266
    • Draw the Phase Distance Characteristics 267
    • Perform a Zone-1 Three-Phase Timing Test 268
      • a) Apply an Energized and Offline Test-State 268
      • b) Apply an Energized and Online Test-State 268
      • c) Apply a Timing Test-State 268
      • d) Apply a Postfault State 270
      • e) 21-Element Timing Test Plan 270
      • f) Evaluate the Results 271
      • g) Review the Relay Responses 271
    • Perform a Zone-1 Breaker Status Blocking Test 272
      • a) Evaluate the Results 273
    • Perform a Zone-1 Loss-of-Potential (60, 60LOP, LOP) Blocking Test 274
      • a) Evaluate the Results 275
    • Perform a Zone-2 Three-Phase Timing Test 275
      • a) Apply an Energized and Offline Test-State 276
      • b) Apply an Energized and Online Test-State 277
      • c) Apply a Timing Test-State 277
      • d) Apply a Postfault State 277
      • e) 21-Element Timing Test Plan 278
      • f) Evaluate the Results 279
      • g) Review the Relay Responses 279
      • Perform a Zone-2 Breaker Status Blocking Test 279
      • h) Evaluate the Results 281
    • Perform a Zone-2 Loss-of-Potential (60, 60LOP, LOP) Blocking Test 281
      • a) Evaluate the Results 283
    • Perform a Zone-1 Dynamic Pickup Test 283
      • a) Perform a Zone-1 Dynamic Test at 95% of the Zone-1 Pickup 284
      • b) Evaluate the Zone-1 Dynamic Test at 95% of the Zone-1 Pickup Results 286
      • c) Perform a Zone-1 Dynamic Test at 105% of the Zone-1 Pickup 287
      • d) Evaluate the Zone-1 Dynamic Test at 105% of the Zone-1 Pickup Results 288
      • e) Perform a Zone-1 Dynamic Test at 95% of the Zone-1 Pickup – Revised 289
      • f) Evaluate the Zone-1 Dynamic Test at 95% of the Zone-1 Pickup Results 290
      • g) Perform a Zone-1 Dynamic Test at 105% of the Zone-1 Pickup – Revised 291
      • h) Evaluate the Zone-1 Dynamic Test at 105% of the Zone-1 Pickup Results 292
      • i) Perform a Zone-2 Dynamic Test at 95% of the Zone-2 Pickup 293
      • j) Evaluate the Zone-2 Dynamic Test at 95% of the Zone-2 Pickup Results 294
      • k) Perform a Zone-2 Dynamic Test at 105% of the Zone-2 Pickup 295
      • l) Evaluate the Zone-2 Dynamic Test at 105% of the Zone-2 Pickup Results 296
    • Perform an MTA Test 297
      • a) Perform a Ramping MTA Test 297
      • b) Perform a Pulsing MTA Test 298
    • Phase-to-Phase Impedance Tests 302
  10. Testing Volts/Hertz (V/Hz) Over-Excitation Elements (24) 306
    • Review the Over-Excitation (24 V/Hz) Settings and Specifications 309
      • a) Definite Time #1 Pickup / Definite Time #2 Pickup / 24D1P Settings 310
      • b) Definite Time #1 Delay / Definite Time #2 Delay / 24D1D Settings 310
      • c) 24CCS Setting 310
      • d) Inverse Time Pickup / 24IP Settings 310
      • e) Inverse Time Curve / 24IC Settings 310
      • f) Inverse Time Time Dial / 24ITD Setting 310
      • g) 24D2P2 Setting 311
      • h) 24D2D2 Setting 311
      • i) Inverse Reset Rate / 24CR Settings 311
      • j) Blocking Inputs / 24TC 312
      • k) Outputs / Trip, Close, ER, Output Elements 312
    • Understanding 24-Element Terminology 313
      • a) V/Hz 313
      • b) Nominal V/Hz 313
      • c) Applied Voltage 313
      • d) Applied Frequency 313
      • e) Applied V/Hz 313
      • f) Measured Voltage 313
      • g) Measured Frequency 314
      • h) Measured V/Hz 314
      • i) Test V/Hz 314
      • j) Relay V/Hz 314
      • k) Multiple of V/Hz Setting 314
    • Draw the Over-Excitation Characteristics 315
    • Get Ready to Perform 24-Element Testing 319
    • Perform a 24-Element Inverse Time Test 320
      • a) Apply an Energized and Offline Test-State 320
      • b) Apply an Energized and Online Test-State 320
      • c) Apply a Timing Test-State at 105% of Pickup 321
      • d) Apply a Postfault State 328
      • e) 24-Inverse Timing Test Plan 329
      • f) Evaluate the Results 330
      • g) Review the Relay Responses 330
      • h) Apply a Second 24-Inverse Timing Test 331
      • i) Second 24-Inverse Timing Test Plan 334
      • j) Evaluate the Results 335
      • k) Review the Relay Responses 335
    • Apply a 24-Inverse Reset Timing Test 336
      • a) 24-Inverse Reset Dynamic Time Test #1 338
      • b) Evaluate the Results 340
      • c) 24-Inverse Reset Dynamic Time Test #2 341
      • d) Evaluate the Results 343
      • Perform a 24-Definite Trip Time Test 344
      • a) Apply an Energized and Offline Test State 344
      • b) Apply an Energized and Online Test State 344
      • c) Apply a 24-Element Timing Test State 344
      • d) Apply a Postfault State 345
      • e) 24-Definite Timing Test 346
      • f) Evaluate the Results 347
      • g) Review the Relay Responses 347
    • Perform a 24-Definite Time Loss-of-Potential Blocking Test 348
      • a) 60-LOP Blocking Test Plan 348
      • b) Evaluate the Results 350
    • Perform a 24-Inverse Time Loss-of-Potential Blocking Test 350
      • a) 24-Definite Time 60-LOP Blocking Test Plan 350
      • b) Evaluate the Results 352
    • Apply a 24-Inverse Pickup Test 352
      • a) Set up the 24-Inverse Pulsing Pickup Test Plan 355
      • b) Run the 24-Inverse Pickup Test 357
      • c) Evaluate the Results 357
    • Perform a 24-Alarm Dynamic Pickup/Timing Test 358
      • a) Apply an Energized and Offline Test-State 358
      • b) Apply an Energized and Online Test-State 358
      • c) Apply a 24-Element Timing Test State Above the Pickup Setting 359
      • d) Apply a Postfault State 359
      • e) First 24-Alarm Dynamic Timing Test 360
      • f) Evaluate the Results 361
      • g) Review the Relay Responses 361
      • h) Apply the Second Half of the 24-Alarm Dynamic Pickup/Time Test 362
      • i) Apply a 24-Element Timing Test State Below the Pickup Setting 363
      • j) Second 24-Alarm Timing Test: 364
      • k) Evaluate the Results 365
      • l) Review the Relay Responses 365
    • Troubleshooting 24-Element Tests 365
      • a) 24-Element Troubleshooting Step #1 365
      • b) 24-Element Troubleshooting Step #2 365
      • c) What if the 81-Element Operates First? 366
      • d) What if the 59-Element operates first? 366
  11. Testing Synchronizing and Sync-Check Elements (25) 372
    • Review the Three-Line Drawings 373
    • Review the Basler BE1-25 Relay Specifications 374
      • a) Review the Style Number 375
      • b) Review the Three-Line and Schematic Drawings 376
    • Review the DC Schematic 377
    • Review the Sync-Check (25) Settings and Specifications 379
      • a) LB & LL & 25VLO Settings 380
      • b) DB/!OV & DL/!OV & 25VHI Settings 380
      • c) Delta-V & 25VDIF Settings 380
      • d) Phase Angle / 25ANG1 Settings 380
      • e) TCLOSD Setting 380
      • f) SYNCP Setting 381
      • g) GENV Setting 381
      • h) 25SLO / 25SHI Setting 381
      • i) BSYNCH Setting 381
      • j) Time Delay Setting 382
      • k) COMPA Setting 382
      • l) 25RCF Setting 383
      • m) R Mode Switch No. 1 / R Mode Switch No. 2 Settings 385
      • n) S Condition Switch Settings 385
      • o) Minimum Voltage Specification 385
      • p) Voltage Accuracy / Steady-state Voltage Accuracy Settings 386
      • q) Steady-State Slip Accuracy Settings 386
      • r) Maximum Transient Angle Accuracy Settings     387
      • s) Selection Accuracy / Setpoint Accuracy Settings 387
      • t) Steady-state Angle Accuracy 387
      • u) Time Accuracy at 25°C / Time Delay Accuracy 387
      • Draw the Sync-Check Characteristics 388
      • a) The Under-Voltage and Not-Over-Voltage Characteristics 388
      • b) The Delta-V Characteristics 389
      • c) The Phase Angle Characteristics 389
      • d) The Slip and Time Delay Characteristic 391
    • Get Ready to Perform 25-Element Testing 392
      • a) Testing a Sync-Check Relay 392
      • b) Testing a Synchronizing Relay 393
      • c) How to Define In-Sync 394
      • Perform a Sync-Check Time Test 397
      • a) Apply an Out-of-Phase Condition 397
      • b) Apply an In-Phase Condition 397
      • c) Apply an Evaluation 398
      • d) Evaluate the Results 398
      • e) Review the Relay Responses 398
    • Perform a Sync-Check Phase Angle Test 399
      • a) Choose a Method to Detect Pickup 399
      • b) Apply a nominal Prefault State 399
      • c) Do Not Apply Any Offset Values 400
      • d) Apply a Start Value That Should Not Operate the Relay 400
      • e) Change the Appropriate Parameters Toward the Operate Condition 400
      • f) Apply a Reset State Between Pulses 400
      • g) Stop the Test if the Relay Doesn’t Operate 400
      • h) Evaluate the Test Results 400
      • i) Repeat for Additional Variables 400
    • Perform a Sync-Check Delta-V Test 401
      • a) Apply a No-Operation Condition 401
      • b) Apply an Operate Condition 402
      • c) Evaluate the Results 402
      • d) Review the Relay Responses 403
      • e) Repeat the Test for a Different Voltage 403
      • f) Evaluate the Results 403
    • Perform a Sync-Check Not-Under-Voltage Test 404
      • a) Choose a Method to Detect Pickup 404
      • b) Apply a Nominal Prefault State 405
      • c) Do Not Apply Any Offset Values 405
      • d) Apply a Start Value 405
      • e) Change the Appropriate Parameters Toward the Operate Condition 405
      • f) Apply a Reset State between Pulses 405
      • g) Stop the Test if the Relay Doesn’t Operate 405
      • h) Evaluate the Test Results 406
      • i) Repeat for the Live Bus Not-Under-Voltage Setting 406
      • j) Evaluate the Test Results 406
    • Perform a Sync-Check Not-Over-Voltage Test 407
      • a) Choose a Method to Detect Pickup 407
      • b) Apply a Nominal Prefault State 407
      • c) Do Not Apply Any Offset Values 408
      • d) Apply a Start Value that Should Not Operate the Relay 408
      • e) Change the Appropriate Parameters Toward the Operate Condition 408
      • f) Apply a Reset State between Pulses 408
      • g) Stop the Test if the Relay Doesn’t Operate 408
      • h) Evaluate the Test Results 408
      • i) Repeat for the Live Bus Not-Under-Voltage Setting 409
      • j) Evaluate the Test Results 409
    • Verify That LL/LB, LL/DB, DL/LB, and DL/DB Features are Disabled 410
    • Verify that Sync-Check Is Disabled when the Circuit Breaker Is Closed 412
    • Create a Synchronizing Relay Test Template 413
    • Test the Phase Angle Window in a Synchronizing Relay 415
      • a) Create a Prefault State 416
      • b) Create a Phase Angle Test State 417
      • c) Create an Evaluation 417
      • d) Evaluate the Results 418
      • e) Review the Relay Responses 419
      • f) Repeat the Phase Angle Test for the Opposite Side 419
    • Test the Maximum Voltage Difference Setting in a Synchronizing Relay 421
      • a) Create a Prefault State 421
      • b) Create a No-Op Test State 421
      • c) Create the No-Op Evaluations 422
      • d) Evaluate the Results 422
      • e) Create an Op Test Prefault State 422
      • f) Create an Op Test State 422
      • g) Create the Op Test Evaluation 423
      • h) Evaluate the Results 423
      • i) Repeat the Maximum Voltage Difference Test in the Other Direction 423
    • Test the Voltage Window, Low Threshold Setting in a Synchronizing Relay 424
      • a) Create a Prefault State 424
      • b) Create a No-Op Test State 424
      • c) Create the No-Op Evaluations 425
      • d) Evaluate the Results 425
      • e) Create an Op Test Prefault State 425
      • f) Create an Op Test State 425
      • g) Create the Op Test Evaluation 425
      • h) Evaluate the Results 426
    • Test the Voltage Window, High Threshold Setting in a Synchronizing Relay 426
      • a) Create a Prefault State 426
      • b) Create a No-Op Test State 427
      • c) Create the No-Op Evaluations 427
      • d) Evaluate the Results 428
      • e) Create an Op Test Prefault State 428
      • f) Create an Op Test State 428
      • g) Create the Op Test Evaluation 428
      • h) Evaluate the Results 428
    • Test the Minimum Slip Frequency Limits in a Synchronizing Relay 429
      • a) Create a Prefault State 429
      • b) Create a No-Op Test State 429
      • c) Create the No-Op Evaluations 430
      • d) Evaluate the Results 430
      • e) Create an Op Test Prefault State 430
      • f) Create an Op Test State 431
      • g) Create the Op Test Evaluation 431
      • h) Evaluate the Results 431
    • Test the Maximum Slip Frequency Limits in a Synchronizing Relay 431
      • a) Create a Prefault State 432
      • b) Create a No-Op Test State 432
      • c) Create the No-Op Evaluations 433
      • d) Evaluate the Results 433
      • e) Create an Op Test Prefault State 433
      • f) Create an Op Test State 433
      • g) Create the Op Test Evaluation 434
      • h) Evaluate the Results 434
    • Make Sure the Generator Voltage Must Be Higher than the Buss Voltage 434
      • a) Create a Prefault State 435
      • b) Create a No-Op Test State 435
      • c) Create the No-Op Evaluations 435
      • d) Evaluate the Results 436
      • e) Create an Op Test Prefault State 436
      • f) Create an Op Test State 436
      • g) Create the Op Test Evaluation 436
      • h) Evaluate the Results 436
    • Prove the Circuit Breaker Must Be Open 437
    • Tips and Tricks 437
      • a) Troubleshooting Steps 437
      • b) Testing Synchronizing Relays with Phase Angle Ramps 438
      • c) How to Determine Correct Test Angles When Monitoring Different Phases 441
      • d) How to Determine Test Conditions with Different PT Ratios 445
      • e) How to Determine Test Conditions with GSU Transformers 448
      • f) Create Four Synchronizing Voltages with Three Test-Set Voltage Channels 451
  12. Testing Under-Voltage Elements (27) 456
    • Review the Under-Voltage (27) Settings and Specifications 458
      • a) E27 Settings 459
      • b) #1, #2, #3 Pickup / 27P1P / 27P2P / 27PP1 / 27PP2 Settings 459
      • c) #1, #2, #3 Time Delay Settings 460
      • d) SV1 / SV2 / SV6 Settings               460
      • e) #1, #2, or #3 Output Settings 461
      • f) Trip, Close, ER, Output Elements 461
      • g) Blocking Inputs 462
      • h) Accuracy Specifications 462
    • Draw the 27-Element Characteristics 463
    • Get Ready to Perform 27-Element Testing 463
    • Perform an A-B 27-Under-Voltage Timing/Dynamic Test 464
      • a) Apply an Energized and Offline Test-State 464
      • b) Apply an Energized and Online Test-State 464
      • c) Apply a Timing Test-State 464
      • d) Apply a Postfault State 466
      • e) 27-Element Timing Test Plan 466
      • f) Evaluate the Results 467
      • g) Review the Relay Responses 467
    • Perform an A-B 27-Under-Voltage No-Op/Dynamic Test 468
      • a) Evaluate the Results 470
    • Perform a 27-Element Breaker Status Blocking Test 470
    • Perform a 27-Element Loss-of-Potential (60, 60LOP, LOP) Blocking Test 471
    • Perform an B-C 27-Under-Voltage Timing Test 473
      • a) 27-Element B-C Timing Test Plan 474
      • b) Evaluate the Results 475
    • Perform a C-A 27-Under-Voltage Timing Test 476
      • a) 27-Element C-A Timing Test Plan 477
      • b) Evaluate the Results 478
    • Perform a Three-Phase 27-Under-Voltage Timing Test 478
      • a) 27-Element Three-Phase Timing Test Plan 479
      • b) Evaluate the Results 480
    • Testing Positive-Sequence 27-Elements (27V1) 480
    • Tips and Tricks 481
  13. Testing Third-Harmonic Under-Voltage / 100% Stator Ground Elements (27TH/64G2) 482
    • Review the Third-Harmonic Under-Voltage Element Settings 486
      • a) E64 Settings 487
      • b) 64RAT Setting 487
      • c) #1, #2, #3 Pickup / 64G2P Settings 488
      • d) #1, #2, #3 Time Delay / 64G2D Settings 488
      • e) #1, #2, #3 Pos. Seq. Voltage Block Settings 488
      • f) 27PP2 Setting 489
      • g) #1, #2, or #3 Output Settings 489
      • h) Trip, Close, ER, Output Elements 489
      • i) Blocking Inputs / Torque Control (64GTC) 490
      • j) #1, #2, #3 Power Block / Pwr. Factor / Band Settings       491
      • k) Accuracy Specifications 492
    • Draw the 27TN-Element Characteristic 493
    • Get Ready to Perform 27TN-Element Testing 493
    • Perform a 27TN-Under-Voltage Timing/Dynamic Test 494
      • a) Apply an Energized and Offline Test-State 494
      • b) Apply an Energized and Online Test-State 494
      • c) Apply a Timing Test-State 494
      • d) Apply a Postfault State 495
      • e) 27TN-Element Timing Test Plan 495
      • f) Evaluate the Results 496
      • g) Review the Relay Responses 496
    • Perform a 27TN-Under-Voltage No-Op/Dynamic Test 497
      • a) Evaluate the Results 498
    • Perform a 27TN-Element Three-Phase Under-Voltage Blocking Test 498
    • Tips and Tricks 500
  14. Reverse Power Elements (32) 502
    • Review the Reverse Power Element Settings 505
      • a) E64 Settings 506
      • b) #1, #2, #3 Pickup / 32P1P Settings 506
      • c) #1, #2, #3 Time Delay / 32P1D Settings 506
      • d) #1, #2, #3 Over/Under Power Settings 507
      • e) #3 Directional Power Sensing Settings 507
      • f) #1, #2, #3 Target LED Enable Settings 507
      • g) #1, #2, or #3 Output Settings 508
      • h) Trip, Close, ER, Output Elements 508
      • i) Blocking Inputs / Torque Control (64GTC) 508
      • j) Accuracy Specifications 509
    • Draw the 32-Element Characteristic 509
    • Get Ready to Perform 32-Element Testing 511
    • Perform a 32-Element Timing/Dynamic Test 512
      • a) Apply an Energized and Offline Test-State 512
      • b) Apply an Energized and Online Test-State 512
      • c) Apply a Timing Test-State 513
      • d) Apply a Postfault State 513
      • e) 32-Element Timing Test Plan 514
      • f) Evaluate the Results 515
      • g) Review the Relay Responses 515
    • Perform a 32-Element No-Op/Dynamic Test 515
      • a) Evaluate the Results 517
    • Perform a 32-Element Loss-of-Potential (60, 60LOP, LOP) Blocking Test 518
      • a) Evaluate the Results 519
    • Perform a 32-Element Breaker Status Blocking Test 519
      • a) Evaluate the Results 520
    • Tips and Tricks 521
  15. Testing Loss-of-Field / Loss-of-Excitation Elements (40) 522
    • Review the Loss-of-Field Element Settings 529
      • a) E40 Settings 530
      • b) #1, #2 Circle Diameter / 40Z1P, 40Z2P Settings 530
      • c) #1, #2 Offset / 40XD1, 40XD2 Settings 530
      • d) Circle Center and Radius Settings 531
      • e) #1, #2 Time Delay / 40Z1D, 40Z2D Settings 533
      • f) Blocking Inputs / Torque Control (40ZTC) 534
      • g) #1, #2 Directional Element Settings 534
      • h) #1, #2 Voltage Control / Delay / Blocking Inputs / Outputs Settings 535
      • i) #1, #2, or #3 Output Settings 535
      • j) Trip, Close, Output Elements 535
      • k) Accuracy Specifications 536
    • Draw the 40-Element Characteristic 537
    • Get Ready to Perform 40-Element Testing 538
    • Perform a 40#2-Element Timing/Dynamic Test on the Larger Circle 538
      • a) Apply an Energized and Offline Test-State 539
      • b) Apply an Energized and Online Test-State 539
      • c) Apply a Timing Test-State 539
      • d) Apply a Postfault State 539
      • e) 40#2-Element Timing Test Plan 540
      • f) Evaluate the Results 541
      • g) Review the Relay Responses 541
    • Perform a 40#2-Element No-Op/Dynamic Test on the Larger Circle 541
      • a) 40#2-Element No Op Test Plan 542
      • b) Evaluate the Results 543
    • Perform a 40#1-Element Timing/Dynamic Test on the Smaller Circle 543
      • a) 40#1-Element Timing Test Plan 544
      • b) Evaluate the Results 545
      • c) Review the Relay Responses 545
    • Perform a 40#1-Element No-Op/Dynamic Test on the Smaller Circle 545
      • a) 40#1-Element No-Op Test Plan 545
      • b) Evaluate the Results 547
    • Perform a 40-Element Offset Timing/Dynamic Test 547
      • a) 40-Element Offset Timing Test Plan 548
      • b) Evaluate the Results 549
    • Perform a 40#1-Element Offset No-Op/Dynamic Test 549
      • a) 40#1-Element Offset No Op Test Plan 549
      • b) Evaluate the Results 551
    • Perform a 40-Element Open Breaker Blocking Test 551
    • Perform a 40-Element Loss-of-Potential (60, 60LOP, LOP) Blocking Test 553
    • Tips and Tricks 555
  16. Testing Negative-Sequence Over-Current Elements (46) 556
    • Review the Negative-Sequence (46) Settings and Specifications 561
      • a) Nominal Current / INOM Settings 562
      • b) E46 Settings 562
      • c) #1, #2 Pickup / 46Q1P / 46Q2P Settings 562
      • d) #1 Time Delay / 46Q1D Settings 562
      • e) #2 Time Dial / 46Q2KD Settings 563
      • f) #2 Maximum Time 563
      • g) #2 Reset Time Settings 563
      • h) #1, #2, or #3 Output Settings 564
      • i) Trip, Close, ER, Output Elements 564
      • j) Blocking Inputs 565
      • k) Accuracy Specifications 565
    • Draw the 46-Element Characteristics 567
    • Get Ready to Perform 46-Element Testing 568
    • Perform a 46-Trip Negative-Sequence Timing Test 569
      • a) Apply an Energized and Offline Test-State 569
      • b) Apply an Energized and Online Test-State 570
      • c) Apply a Timing Test-State 570
      • d) Apply a Postfault State 571
      • e) 46-Trip-Element Timing Test Plan 572
      • f) Evaluate the Results 573
      • g) Review the Relay Responses 573
    • Perform a 46-Alarm Dynamic Timing Test 574
      • a) Apply an Energized and Offline Test-State 574
      • b) Apply an Energized and Online Test-State 574
      • c) Apply a Timing Test-State 574
      • d) Apply a Postfault State 575
      • e) 46-Alarm Timing Test Plan 575
      • f) Evaluate the Results 576
      • g) Review the Relay Responses 577
    • Perform an 46-Negative-Sequence Alarm No-Op/Dynamic Test 577
    • h) Evaluate the Results 579
    • Apply a 46-Inverse Pickup Test 580
      • a) Set up the 46-Inverse Pulsing Pickup Test Plan 582
      • b) Run the 46-Inverse Pickup Test 584
      • c) Evaluate the Results 585
    • Tips and Tricks 585
  17. Testing Inadvertent-Energization Elements (50/27) 586
    • Review the Inadvertent-Energization Element Settings 590
      • a) Overcurrent (50) Pickup / 50LP Settings 590
      • a) Undervoltage (27) Pickup / 27V1 Settings 591
      • b) Undervoltage (27) Pick-up Delay, SV2PU Settings 592
      • c) Undervoltage (27) Drop-Out Delay, SV2DO Settings 592
      • d) INAD Setting 593
      • e) SV2 Settings 593
      • f) INADPU Setting 594
      • g) INADDO Setting 594
      • h) Output(s) Setting 594
      • i) Trip, Output Settings 595
      • j) Blocking Inputs 595
      • k) Accuracy Specifications 595
    • Draw the 50/27-Element Characteristic 597
      • a) Understanding the M-3425A 50/27-Element Logic 597
      • b) Understanding the SEL-300G Inadvertent-Energization Element Logic 597
    • Get Ready to Perform Inadvertent-Energization Element Tests 599
    • Perform an Inadvertent-Energization Timing/Dynamic Test 600
      • a) Apply an Energized Test-State 600
      • b) Apply an Offline Test-State 601
      • c) Apply an Inadvertent-Energization Timing Test-State 601
      • d) Apply a Postfault State 602
      • e) Evaluate the Results 603
      • f) Review the Relay Responses 604
    • Perform an Inadvertent-Energization Over-Voltage No-Op Test 604
    • Perform an Inadvertent-Energization Pickup Time No-Op Test 606
    • Perform an Inadvertent-Energization Drop-Out Time Test 608
    • Perform an Inadvertent-Energization Drop-Out No-Op Test 610
    • Tips and Tricks 612
  18. Testing Generator Breaker Failure (50BF) Schemes 614
    • Understanding Breaker Fail Elements 622
      • a) Breaker Status (52A) 622
      • b) Breaker Fail Initiate (BFI) 624
      • c) Breaker Failure Timer 624
    • Review the Breaker Fail Element Settings 626
      • a) Phase Current Select / E50_87 Settings 626
      • b) Outputs Setting 627
      • c) OUT105 Settings 627
      • d) SV8 Settings 628
      • e) 52A Setting. 630
      • f) Phase Current / 50H1 Settings 630
      • g) Neutral Current Select 632
      • h) Neutral Current 632
      • i) Output Initiate 632
      • j) Time Delay / SV8PU Setting 633
      • k) SV8DO Setting 633
      • l) Input Initiate Setting 633
      • m) Blocking Inputs 634
      • n) Accuracy Specifications 634
    • Draw the 50BF-Element Characteristic 634
      • a) Understanding the M-3425A 50BF-Element Logic 634
      • b) Understanding the SEL-300G Breaker Fail Element Logic 636
      • c) Understanding Breaker Fail Time Delays 637
    • Get Ready to Perform Breaker Fail Element Tests 640
    • Perform an Breaker Fail Timing/Dynamic Test 642
      • a) Apply an Energized and Offline Test-State 642
      • b) Apply an Energized and Online Test-State 642
      • c) Apply a Breaker Fail Initiate Test-State 643
      • d) Apply a Breaker Fail Timing Test-State 643
      • e) Apply a Postfault State 643
      • f) Apply The Test Plan 644
      • g) Evaluate the Results 645
      • h) Review the Relay Responses 646
    • Perform a Breaker Fail No-Op Test 647
    • Perform a Breaker Fail Timing No-Op Test with Current 649
    • Perform a Breaker Fail Timing Test with Current 651
    • Test Alternate Breaker Fail Initiate Inputs 653
    • Tips and Tricks 656
  19. Testing Voltage-Controlled Over-Current (51VC) Elements 658
    • Review the Voltage-Controlled-Over-Current (51VC) Settings and Specifications 660
      • a) EBUP / Voltage Control Settings 661
      • b) Pickup / 51CP Settings 661
      • c) Time Dial / 51CTD Settings 661
      • d) Inverse Time Curves / 51CC Settings 662
      • e) 51CRS Setting 662
      • f) 51CTC Setting 663
      • g) Voltage Control / 59V1P Setting 664
      • h) Blocking Inputs / 51CTC Settings 664
      • i) Outputs Setting 665
      • j) Trip, Close, ER, Output Elements 665
      • k) Accuracy Specifications 666
    • Draw the 51VC-Element Characteristics 669
    • Get Ready to Perform 51VC-Element Tests 670
    • Perform a 51VC-Trip Voltage-Controlled-Over-Current Timing Test 672
      • a) Apply an Energized and Offline Test-State 672
      • b) Apply an Energized and Online Test-State 672
      • c) Apply a Timing Test-State 673
      • d) Apply a Postfault State 673
      • e) 51VC-2x Trip-Element Timing Test Plan 674
      • f) Evaluate the Results 675
      • g) Review the Relay Responses 676
    • Perform a Second 51VC Voltage-Controlled-Over-Current Timing Test 677
    • h) Evaluate the Results 678
    • Perform a Third Voltage-Controlled-Over-Current Timing Test (Optional) 679
    • Perform a 51VC Voltage-Controlled No-Op Test 681
    • Perform a 51VC-Element Loss-of-Potential (60, 60LOP, LOP) Blocking Test 683
    • Perform a 51VC-Element Open Breaker Blocking Test 685
    • Apply a 51VC-Inverse Pickup Test 687
      • a) Set up the 51VC-Inverse Pulsing Pickup Test Plan 688
      • b) Run the 51VC-Inverse Pickup Test 691
      • c) Evaluate the Results 691
    • Tips and Tricks 692
  20. Testing Voltage-Restrained Over-Current (51VR) Elements 694
    • Review the Voltage-Restrained-Over-Current (51VR) Settings and Specifications 699
      • a) EBUP / Voltage Control Settings 699
      • b) Pickup / 51VP Settings 700
      • c) Time Dial / 51CTD Settings 700
      • d) Inverse Time Curves / 51VC Settings 700
      • e) 51VRS Setting 701
      • f) 51VTC Setting 701
      • g) Blocking Inputs 702
      • h) Outputs Setting 702
      • i) Trip, Close, ER, Output Elements 702
      • j) Accuracy Specifications 703
    • Draw the 51VR-Element Characteristics 706
    • Get Ready to Perform 51VR-Element Tests 709
    • Apply a 51VR-Inverse Pickup Test 712
      • a) Set up the 51-Inverse Pulsing Pickup Test Plan 714
      • b) Run the 51VR-Inverse Pickup Test 716
      • c) Evaluate the Results 716
    • Perform a 51VR-Trip Voltage-Restrained-Over-Current Timing Test 716
      • a) Apply an Energized and Offline Test-State 717
      • b) Apply an Energized and Online Test-State 717
      • c) Apply a Timing Test-State 717
      • d) Apply a Postfault State 718
      • e) 51VR-Trip-Element Timing Test Plan 719
      • f) Evaluate the Results 720
      • g) Review the Relay Responses 720
      • Perform a Second 51VR Voltage-Restrained-Over-Current Timing Test 721
      • h) Evaluate the Results 723
    • Perform a Third Voltage-Restrained-Over-Current Timing Test 723
    • Perform a 51VR-Element Loss-of-Potential (60, 60LOP, LOP) Blocking Test 726
    • Perform a 51VR-Element Open Breaker Blocking Test 728
    • Tips and Tricks 730
  21. Testing Over-Voltage Elements (59) 732
    • Review the Over-Voltage (59) Settings and Specifications 733
      • a) E59 Settings 734
      • b) Input Voltage Selection Settings 735
      • c) #1, #2, #3 Pickup / 59P1P / 59P2P / 59PP1 / 59PP2 Settings 735
      • d) #1, #2, #3 Time Delay Settings 736
      • e) SV3 / SV5/ SV3PU/ SV5PU / SV3DO/ SV5DO Settings 736
      • f) #1, #2, or #3 Output Settings 737
      • g) Trip, Close, ER, Output Elements 737
      • h) Blocking Inputs 738
      • i) Accuracy Specifications 738
    • Draw the 59-Element Characteristics 740
    • Get Ready to Perform 59-Element Tests 740
    • Perform a Three-Phase 59#1 / 59PP1-Over-Voltage Timing/Dynamic Test 741
      • a) Apply an Energized and Offline Test-State 741
      • b) Apply an Energized and Online Test-State 741
      • c) Apply a Timing Test-State 741
      • d) Apply a Postfault State 742
      • e) 59-Element Timing Test Plan 742
      • f) Evaluate the Results 743
      • g) Review the Relay Responses 744
    • Perform a 59#1 / 59PP1 Over-Voltage No-Op/Dynamic Test 745
    • Perform a Three-Phase 59#2 / 59PP2-Over-Voltage Timing/Dynamic Test 747
      • a) 59#2 / 59PP2-Element Timing Test Plan 747
      • b) Evaluate the Results 749
      • c) Review the Relay Responses 749
    • Perform a 59-Over-Voltage No-Op/Dynamic Test 749
    • Tips and Tricks 751
      • a) A-B 59#1 / 59PP1 Minimum Voltage Test Calculations 752
      • b) B-C 59#1 / 59PP1 Test Maximum Voltage Test Calculations 753
      • c) C-A 59#2 / 59PP2 Test Maximum Voltage Test Calculations 754
  22. Testing Neutral Over-Voltage Elements (59N) 756
    • Review the Neutral Over-Voltage (59N) Settings and Specifications 759
      • a) VT Neutral Ratio / PTRN Settings 759
      • b) E64 Settings 760
      • c) #1, #2, #3 Pickup / 64G1P Settings 760
      • d) #1, #2, #3 Time Delay / 64G1D Settings 760
      • e) #1, #2, or #3 Output Settings 761
      • f) Trip, Close, ER, Output Elements 761
      • g) Blocking Inputs / Torque Control (64GTC) 761
      • h) Accuracy Specifications 762
    • Draw the 59N-Element Characteristic 762
    • Get Ready to Perform 59N-Element Tests 763
    • Perform a Neutral Over-Voltage Timing/Dynamic Test 763
      • a) Apply an Energized and Offline Test-State 763
      • b) Apply a Timing Test-State 763
      • c) Apply a Postfault State 764
      • d) 59N-Element Timing Test Plan 764
      • e) Evaluate the Results 765
      • f) Review the Relay Responses 765
    • Perform a Neutral Over-Voltage No-Op/Dynamic Test 766
      • a) Evaluate the Results 767
  23. Testing VT Fuse-Loss (60FL) / Loss-of-Potential (60LOP) Elements 768
    • Voltage-Balance Relays (60VB) 768
    • Loss-of-Potential / Fuse Failure (60LOP) Elements Embedded in Relays 772
    • Verify the VT Fuse Failure (60FL) and Loss-of-Potential (60LOP) Protection Settings 776
      • a) Time Delay Setting 776
      • b) Three Phase Fuse Loss Detection Setting 776
      • c) Input Initiate Setting 777
      • d) Blocking Inputs Setting 777
      • e) Outputs Settings 777
      • f) 27B81P Setting 777
      • g) 50LP Setting 778
      • h) SV1 / SV1PU / SV1DO Settings 778
      • i) Trip, Close, ER, Output Elements 779
      • j) Accuracy Specifications 779
    • Perform a Single-Phase PT Failure Timing Test 780
      • a) Apply an Energized and Offline Test-State 780
      • b) Apply an Energized and Online Test-State 780
      • c) Apply a PT Fuse Timing Test State 780
      • d) PT Fuse Timing Test Plan 780
      • e) Review the Test Results 782
      • f) Review the Relay Responses 782
    • Perform a Three-Phase PT Failure Timing Test 782
  24. Testing Out-of-Step / Loss-of-Synchronism Elements (78) 786
    • Power System Stability Fundamentals 786
      • a) Generator Steady-State Response 787
      • b) Generator Transient Response 787
      • c) Power Transfer Angle or Power Angle 788
      • d) The Power Angle Plot 789
    • Example of a Successful Transient Response to a Fault 791
    • Examples of an Unsuccessful Transient Response to a Fault 795
    • Swing Impedance Characteristic 796
    • Out-of-Step (78) Protection Characteristics 799
    • Testing 78-Elements 805
      • a) Impedance-Based Tests 805
      • b) Testing 78-Elements with Frequency 807
      • c) Loss-of-Synchronism Fault Simulations 809
    • Review the Out-of-Step Element Settings 810
      • a) E78 Setting 811
      • b) Circle Diameter Setting 811
      • c) Offset Setting 811
      • d) 78FWD Setting 811
      • e) 78REV Setting 812
      • f) Blinder Impedance / 78R1 / 78R2 Settings 812
      • g) Impedance Angle Settings 812
      • h) Pole Slip Counter / Pole Slip Reset Time Settings 812
      • i) Time Delay Setting 813
      • j) Trip on MHO Exit Setting 813
      • k) 78TD and 78TDURD Settings 813
      • l) 50ABC Settings 814
      • m) Blocking Inputs / OOSTC Settings 814
      • n) Outputs Setting 814
      • o) Trip, Close, Output Elements 814
      • p) Accuracy Specifications 815
    • Draw the 78-Element Characteristic 815
      • a) Draw the M-3425A Characteristic 815
      • b) Draw the SEL-300G Characteristic 816
    • Get Ready to Perform 78-Element Testing 817
    • Find 78-Element Test Points 819
      • a) Maximum Test Impedance 819
      • b) Calculate the MHO Entry Angle at the Test Impedance 821
      • c) Calculate the Blinder 1 Entry Angle at the Test Impedance 823
      • d) Calculate the Blinder 2 Exit Angle at the Test Impedance 823
      • e) Calculate the MHO Exit Angle at the Test Impedance 823
    • Calculate the 78-Test Parameters 823
      • a) Apply an Energized and Offline Test-State 824
      • b) Apply an Energized and Online Test-State 824
      • c) Calculate the 78-Swing Currents and Voltages to Apply 824
      • d) Determine the 78-Swing Start Angle 825
      • e) Calculate the Minimum 78-Swing Current Ramp Rate when the 40-Element May Trip First 825
      • f) Calculate the Maximum 78-Swing Current Ramp Rate when a Swing Time Delay Exists 828
      • g) Calculate the Ramp Rate Error and Determine the 78-Swing Ramp Rate 828
      • h) Calculate the Expected Time Delay or Stop Angle When the Relay Trips at the Second Blinder 829
      • i) Calculate the Expected Time Delay or Stop Angle When the Relay Trips as it Leaves the 78-MHO Characteristic   830
      • j) Determine the Test-Set Stop Point 830
      • k) Determine the Ramp Parameters 831
      • l) Apply a Postfault State 831
    • Apply the 78-Element Test 832
      • a) 78-Element Timing Test Plan 832
      • b) Evaluate the Results 834
      • c) Review the Relay Responses 834
    • Perform a 78-Element Loss-of-Potential (60, 60LOP, LOP) Blocking Test 835
    • Apply a 78-Element Normal Swing No-Op Test 838
      • a) 78-Element Timing Test Plan 839
      • b) Evaluate the Results 840
    • Tips and Tricks 841
      • a) Are You Sure You Understand the Impedance Characteristics Inside the Relay Correctly? 841
      • b) Did You Perform Your Calculations Correctly? 841
      • c) Are Your Start and Stop Angles at the Correct Locations? 841
      • d) Should Your Ramp Rate be Positive or Negative? 842
      • e) Did the 40-Element Operate Instead? 842
      • f) You Tried Everything and it Still Doesn’t Work? 842
  25. Testing Over/Under-Frequency Elements (81) 844
    • Review the Under-/Over-Frequency (81) Settings and Specifications 853
      • a) E81 Settings 855
      • b) 27B81P Settings 855
      • c) #1, #2, #3, #4 Pickup / 81D#P Settings 855
      • d) #1, #2, #3, #4 Time Delay Settings 856
      • e) 81D#D Time Delay Settings 856
      • f) #1, #2, or #3 Output Settings 856
      • g) Trip, Close, ER, Output Elements 857
      • h) #1, #2, #3, and #4 Blocking Inputs 858
      • i) Accuracy Specifications 859
    • Draw the 81-Element Characteristics 860
    • Get Ready to Perform 81-Element Testing 861
    • Perform an 81U1-Under-Frequency Dynamic Pickup/Timing Test 861
      • a) Apply an Energized and Offline Test-State 862
      • b) Apply an Energized and Online Test-State 862
      • c) Apply a No-Op Test-State 862
      • d) Apply a Timing Test-State 862
      • e) Apply a Postfault State 863
      • f) 81U1-Element Timing Test Plan 863
      • g) Evaluate the Results 865
      • h) Review the Relay Responses 866
    • Perform an 81U1-Element Breaker Status Blocking Test 866
    • Perform an 81U2-Under-Frequency Dynamic Pickup/Timing Test 868
      • a) Apply an Energized and Offline Test-State 868
      • b) Apply an Energized and Online Test-State 868
      • c) Apply a No-Op Test-State 868
      • d) Apply a Timing Test-State 869
      • e) Apply a Postfault State 870
      • f) 81U2-Element Timing Test Plan 870
      • g) Evaluate the Results 872
      • h) Review the Relay Responses 872
    • Perform a 81U2-Element Breaker Status Blocking Test 873
    • Perform an 81O1-Over-Frequency Dynamic Pickup/Timing Test 875
      • a) Apply an Energized and Offline Test-State 875
      • b) Apply an Energized and Online Test-State 875
      • c) Apply a No-Op Test-State 875
      • d) Apply a Timing Test-State 876
      • e) Apply a Postfault State 876
      • f) 81O1-Element Timing Test Plan 877
      • g) Evaluate the Results 878
    • h) Review the Relay Responses 879
    • Perform an 81O1-Element Breaker Status Blocking Test 879
    • Perform an 81O2-Over-Frequency Dynamic Pickup/Timing Test 881
      • a) Apply an Energized and Offline Test-State 881
      • b) Apply an Energized and Online Test-State 881
      • c) Apply a No-Op Test-State 881
      • d) Apply a Timing Test-State 882
      • e) Apply a Postfault State 883
      • f) 81O2-Element Timing Test Plan 883
      • g) Evaluate the Results 884
      • h) Review the Relay Responses 885
    • Perform a 81O2-Element Breaker Status Blocking Test 886
    • Tips and Tricks 888
  26. Differential Elements (87) 890
    • Review the Differential (87) Settings and Specifications 895
      • a) E87 Settings 896
      • b) Phase CT Correction 896
      • c) TAP1 / TAPD Settings 896
      • d) U87P Settings 897
      • e) #1, #2 Pickup / O87P Settings 897
      • f) #1, and #2 Time Delay Settings 897
      • g) Slope 1 Settings 898
      • h) #1 and #2 Output Settings 899
      • i) Trip, Close, ER, Output Elements 899
      • j) Blocking Inputs / 87B Settings 899
      • k) Accuracy Specifications 900
    • Draw the 87-Element Characteristics 901
      • a) How to Draw the M-342A Characteristic 901
      • b) How to Draw the SEL-300G Characteristic 903
    • Get Ready to Perform 87-Element Tests 905
    • Perform a Three-Phase Minimum Pickup/Timing Dynamic Test 906
      • a) Apply an Energized and Offline Test-State 906
      • b) Apply an Energized and Online Test-State 906
      • c) Apply a No-Op Test-State 906
      • d) Apply a Buffer Test-State 907
      • e) Apply a Timing Test-State 907
      • f) Apply a Postfault State 908
      • g) 87-Element Minimum Pickup Timing/Pickup Dynamic Test Plan 908
      • h) Evaluate the Results 909
      • i) Review the Relay Responses 910
    • Perform a Three-Phase Minimum Pickup/Timing Dynamic Test on Second Winding 911
      • a) 87-Element Minimum Pickup Timing/Pickup Dynamic Test Plan 911
      • b) Evaluate the Results 912
    • Perform a Slope 1 Pickup/Timing Dynamic Test 913
      • a) Calculate the M-3425A Slope 1 Test Variables 913
      • b) Calculate the SEL-300G Slope 1 Test Variables 917
      • c) 87-Element Slope 1 Timing/Pickup Dynamic Test Plan 920
      • d) Evaluate the Results 921
    • Perform a Second Slope 1 Pickup/Timing Dynamic Test 922
      • a) Calculate the M-3425A Slope 1 Test Variables 922
      • b) Calculate the SEL-300G Slope 1 Test Variables 923
      • c) Second 87-Element Slope 1 Timing/Pickup Dynamic Test Plan 925
      • d) Evaluate the Results 927
    • Perform a Slope 2 Pickup/Timing Dynamic Test 927
      • a) Calculate the M-3425A Slope 2 Test Variables 927
      • b) Calculate the SEL-300G Slope 2 Test Variables 929
      • c) 87-Element Slope 2 Timing/Pickup Dynamic Test Plan 932
      • d) Evaluate the Results 933
    • Perform a Second Slope 2 Pickup/Timing Dynamic Test 935
      • a) Calculate the M-3425A Slope 2 Test Variables 936
      • b) Calculate the SEL-300G Slope 2 Test Variables 937
      • c) Single-Phase Testing when Currents Exceed Test-Set Capabilities 939
      • d) Second 87-Element Slope 2 Single-Phase Timing/Pickup Dynamic Test Plan 941
      • e) Evaluate the Results 942
      • f) Repeat the Single-Phase Slope 2 Test on B-Phase 943
      • g) Repeat the Single-Phase Slope 2 Test on C-Phase 943
    • Perform Three Single-Phase 87-Element Timing Tests 943
      • a) Calculate the Timing Test Current to Apply 944
      • b) A-Phase 87-Element Timing/Pickup Dynamic Test Plan 944
      • c) Evaluate the Results 945
      • d) B-Phase 87-Element Timing/Pickup Dynamic Test Plan 946
      • e) Evaluate the Results 947
      • f) C-Phase 87-Element Timing/Pickup Dynamic Test Plan 947
      • g) Evaluate the Results 948
    • Perform an Unrestrained Differential Dynamic Pickup/Timing Test 949
      • a) Calculate the SEL-300G 87-U Element Test Variables 950
      • b) 87U-Element Timing/Pickup Dynamic Test Plan 951
      • c) Evaluate the Results 952
      • d) Repeat the Single-Phase 87U-Element Dynamic Pickup/Timing Test on B-Phase 953
      • e) Repeat the Single-Phase 87U-Element Dynamic Pickup/Timing Test on C-Phase 953
    • Tips and Tricks 953
  27. Test The Logic and Display Settings 956
    • Testing Virtual Relays 957
      • a) SV1 960
      • b) SV2 960
      • c) SV3 961
      • d) SV4 961
      • e) SV5 963
      • f) SV7 963
      • g) SV8 964
      • h) SV10 965
    • Testing Virtual Latching Relays 966
      • a) LT1 967
      • b) LT2 968
      • c) LT5 969
    • Display Points / Front Panel Messages 969
      • a) DP1 970
      • b) DP2 971
      • c) DP3 971
      • d) DP4 972
      • e) DP6 972
      • f) DP7 972
    • Custom Front Panel LEDs 973
    • ALIAS Settings 973
      • a) ALIAS1 974
      • b) ALIAS2 974
      • c) ALIAS3 974
      • d) ALIAS4 975
      • e) ALIAS5 975
      • f) ALIAS8 975
      • g) ALIAS9 and ALIAS10 976
      • h) ALIAS11 976
      • i) ALIAS12 977
      • j) ALIAS13 977
      • k) ALIAS14 977
      • l) ALIAS15 978
      • m) ALIAS18 978
    • Control Functions 979
      • a) Local Control Switches (LB#) 979
      • b) Remote Control Switches (RB#) 980
    • Clear Your Test Data from the Relay 982
    • Set the Clock 982
    • Clear the Target History 983
    • Clear the Sequence of Events 983
    • Clear the Oscillograph Records 984
    • Clear the Demand Records 984
    • Clear the Peak Demand Records 984
    • Clear the Minimum and Maximum Metering Records 984
    • Clear the Energy Metering Records 984
    • Clear the Breaker Monitoring Data Records 985
    • Conclusion 986
  28. Review the Application 987
    • Don’t Assume 988
    • Review the Relay Messages, Events, and Recordings 989
    • Report Your Findings 993
  29. Final thoughts 994
  30. Appendix 1 – Example Relay Test Report 996
    • Outstanding Issues Requiring Immediate Attention 996
    • Outstanding Issues That May Affect Future Troubleshooting/ Operational Tasks: 1000
    • Issues Resolved During Testing That Do Not Require Any Further Attention: 1002
  31. Appendix 2 – M-3425A Relay Settings 1006
  32. Appendix 3 – SEL-300G Relay Settings 1012
    • SHO G 1012
    • SHO Group 1 1014
    • SHO R 1016
  33. Appendix 4 – Get More Information Online 1018
  34. Bibliography 1020

Table of Figures

  • Figure 1-1: Early DC Power System Voltage Drop               36
  • Figure 1-2: Early AC Power System Voltage Drop               37
  • Figure 1-3: Generator Block Diagram       39
  • Figure 1-4: Coal-Fired Power Plant Diagram          40
  • Figure 1-5: BWR Nuclear Power Plant Diagram    40
  • Figure 1-6: Hydroelectric Dam    41
  • Figure 1-7: Hydroelectric Generator Cross-Section            41
  • Figure 1-8: Pump Storage             42
  • Figure 1-9: Gas Turbine Block Diagram    43
  • Figure 1-10: Co-Generation Plant Block Diagram                43
  • Figure 1-11: Internal-Combustion Engine Generator Block Diagram           44
  • Figure 1-12: Simplified Generator Stator                45
  • Figure 1-13: Hydro-Generator Stator       46
  • Figure 1-14: Simplified Generator Rotor 47
  • Figure 1-15: Example Generator Rotor   47
  • Figure 1-16: Single-Phase Generator Current Path            48
  • Figure 1-17: Three-Phase Generator Current Paths          48
  • Figure 1-18: Ungrounded Generator       49
  • Figure 1-19: Solidly-Grounded Generator             51
  • Figure 1-20: Solidly-Grounded Generator             52
  • Figure 1-21: High-Impedance Grounded Generator         53
  • Figure 1-22: Distribution Grounding Transformer Application       54
  • Figure 1-23: Calculate Primary Distribution Grounding Transformer Impedance   54
  • Figure 1-24: Calculate Maximum Fault Current    55
  • Figure 1-25: Typical Relay Test Plan Waveform    56
  • Figure 1-26: Proper Relay Test Plan Waveform with Prefault and Fault States       56
  • Figure 1-27: Realistic Relay Test Plan Waveform with DC Offset  57
  • Figure 1-28: AC Decaying Generator Fault Current            58
  • Figure 1-29: Generator Short Circuit Test Results               61
  • Figure 2-1: Generator Frequency Control Diagrams – No Load     65
  • Figure 2-2: Generator Frequency Control Diagrams – Energizing System Only       66
  • Figure 2-3: Generator Load Frequency Control Diagrams – 25% Load         67
  • Figure 2-4: Generator Load Frequency Control Diagrams – 25% Load – Isoch         68
  • Figure 2-5: Generator Load Frequency Control Diagrams – 100% Load – Isoch       69
  • Figure 2-6: Generator Load Frequency Control Diagrams – 132% Load – Isoch       70
  • Figure 2-7: Generator Load-Shedding Scheme    71
  • Figure 2-8: Generator Voltage with No Load        72
  • Figure 2-9: Generator Voltages – System Load Only         73
  • Figure 2-10: Generator Automatic Voltage Regulator – System Load Only              74
  • Figure 2-11: Generator Automatic Voltage Regulator – 25% Load               75
  • Figure 2-12: Generator Automatic Voltage Regulator – 100% Load             76
  • Figure 2-13: Generator Automatic Voltage Regulator – Fault        77
  • Figure 2-14: Generator Governor Load Sharing and Speed Controller       79
  • Figure 2-15: Generator Governor Droop Control with 4% Droop 80
  • Figure 2-16: Generator Governor Droop Control with Variable Droop Settings     81
  • Figure 2-17: Generator Governor Droop Control with Multiple Generators           82
  • Figure 2-18: Governor Droop Control with Multiple Generators and Different Settings    82
  • Figure 2-19: Generator AVR Voltage Sharing with Identical Voltages         84
  • Figure 2-20: Generator AVR Voltage Sharing with 0.01V Different Voltages           85
  • Figure 2-21: Generator AVR Voltage Sharing with 1% Different Voltages                85
  • Figure 2-22: Generator AVR Voltage Sharing with 2% Different Voltages                85
  • Figure 2-23: Generator Excitation Droop Control with Dead Band Settings             86
  • Figure 2-24: Governor Droop Control with Multiple Generators and Dead Band Settings 88
  • Figure 2-25: Delta-V with Waveforms     92
  • Figure 2-26: Phase Angle Delta-V Comparison     93
  • Figure 2-27: Breaker Closing Time Affects Synchronization            94
  • Figure 2-28: Manual Synchronization Circuit         95
  • Figure 2-29: Formula to Calculate the Pre-Close Angle to Close at TDC     96
  • Figure 2-30: Calculate Maximum Slip with Phase Angle and Time Delay Settings  97
  • Figure 2-31: Auto-Synchronization Circuit              98
  • Figure 2-32: Generator Protective Relay Single-Line Drawing       104
  • Figure 2-33: Phase-Ground Fault Inside a Generator        105
  • Figure 2-34: NERC Standard PRC-024-2 Frequency Setpoint Standards     120
  • Figure 3-1: Clean Sine Wave        122
  • Figure 3-2: Dirty Sine Wave          122
  • Figure 3-3: Beckwith M-3425A Oscillograph with Balanced Currents and Voltages               123
  • Figure 3-4: SEL-300G Oscillograph with Balanced Currents and Voltages  124
  • Figure 3-5: SEL-300G Oscillograph with Balanced Currents             124
  • Figure 3-6: Simple Single-Line Drawing   125
  • Figure 3-7: Generator Metering Results 125
  • Figure 3-8: Generator and Load Phasor Diagrams              126
  • Figure 3-9: Phasor Relation to Watts and VARs   127
  • Figure 3-10: Primary Impedance Calculation         128
  • Figure 3-11: Secondary  Impedance Calculation  128
  • Figure 3-12: Primary to Secondary Impedance Calculation             129
  • Figure 3-13: Three-Phase Delta to Wye Calculation           129
  • Figure 3-14: Generator Phasor and Impedance Diagram Under Normal Load        129
  • Figure 3-15: Generator Phasor and Impedance Diagram During a System Fault    130
  • Figure 3-16: Power/VAR (PQ) Drawing Standards              131
  • Figure 3-17: Power/VAR (PQ) Drawing   132
  • Figure 3-18: Incorrect Power/VAR (PQ) Drawing                133
  • Figure 3-19: Complex Power Calculation                134
  • Figure 3-20: Power/VAR (PQ) Drawing Standards              135
  • Figure 3-21: Steam Generator Capability Curve  136
  • Figure 4-1: Motor Nameplate     141
  • Figure 4-2: How to Calculate Amps from VA         142
  • Figure 4-3: How to Calculate VARs from Power Factor     142
  • Figure 4-4: How to Calculate Amps from Watts   143
  • Figure 4-5: Single-Line Drawing  144
  • Figure 4-6: Single-Line Drawing  147
  • Figure 4-7: Neutral PT Connections from Instruction Manuals      149
  • Figure 4-8: Neutral PT Connections from Three-Line Drawings    150
  • Figure 4-9: Normal Generator Current Flow         151
  • Figure 4-10: Possible CT Connections from the Beckwith Electric M-3425A Relay Manual 152
  • Figure 4-11: Standard Neutral CT Connections from Instruction Manual  152
  • Figure 4-12: Standard Neutral CT Connections from Instruction Manual  153
  • Figure 4-13: Standard Neutral CT Connections from Instruction Manual  153
  • Figure 4-14: SEL-300G Instruction Manual Three-Line Drawing     154
  • Figure 4-15: Site Three-Line CT Drawing for SEL-300G      154
  • Figure 4-16: Site Schematic Drawing for Beckwith M-3425A          155
  • Figure 4-17: Site Schematic Drawing for SEL-300G              155
  • Figure 4-18: Site Three-Line CT Drawing 157
  • Figure 4-19: Standard Three-Line CT Drawing      158
  • Figure 4-20: Current Connections for Test-Set with Three Currents           159
  • Figure 4-21: Wye PT Connections              159
  • Figure 4-22: Delta PT Connections            160
  • Figure 4-23: Test-Set to Relay DC Connections    161
  • Figure 4-24: Dry Digital Input Connections             162
  • Figure 4-25: Wet Digital Input Connections           163
  • Figure 4-26: Test-Set Supplied Wet Contacts       164
  • Figure 4-27: Three-Phase Normal Conditions       166
  • Figure 4-28: Three-Phase Fault Calculation Summary       167
  • Figure 4-29: Three-Phase Fault Conditions            168
  • Figure 4-30: Phase-Phase Fault Calculation Summary       169
  • Figure 4-31: Phase-Phase Fault Conditions           170
  • Figure 4-32: Phase-Ground Fault Calculation Summary   171
  • Figure 4-33: Phase-Ground Fault Conditions        172
  • Figure 4-34: Fault Simulation Magnitude and Angle Calculations 174
  • Figure 5-1: Nominal Current Setting Calculation  178
  • Figure 5-2: Nominal Phase-Phase Voltage Setting Calculation      178
  • Figure 5-3: Nominal Phase-Neutral Voltage Setting Calculation   179
  • Figure 5-4: Energized State Setup             180
  • Figure 5-5: Online State Setup Without Current 181
  • Figure 5-6: Online State Setup with Current and In-Phase CTs     182
  • Figure 5-7: Online State Setup with Current and Out-of-Phase CTs            182
  • Figure 5-8: Pickup Test Plan and Parameters        185
  • Figure 5-9: Simulate Loss-of-Potential Blocking with a Test-Set Output    187
  • Figure 5-10: Simulate Loss-of-Potential Blocking with a Test-Set Output 189
  • Figure 5-11: Instantaneous Overcurrent Element Pickup Time Curve        192
  • Figure 6-1: Different Test-Set and Relay Phase Angle References              220
  • Figure 6-2: Wye PT Secondary Voltage to Primary Voltage Calculation      221
  • Figure 6-3: Expected Current Calculations for a Meter Test           222
  • Figure 7-1: Delta and Open-Delta PT Connections             225
  • Figure 7-2: Test-Set Connection to Delta and Open-Delta PT Connections              225
  • Figure 7-3: P-N and P-P Test-Set Voltage Phasors              227
  • Figure 7-4: P-P Test-Set Voltage Phasors               228
  • Figure 7-5: Old Open-Delta PT Connections          229
  • Figure 7-6: Old Open-Delta PT Connection Phasor Diagram           230
  • Figure 7-7: Test-Set Connection with Wye PTs    231
  • Figure 7-8: Modern Test-Set Connection with Delta PTs 231
  • Figure 7-9: Wye/Delta Voltages and Line Current Phasor Diagram              232
  • Figure 7-10: Delta Voltages and Line Current Phasor Diagram       232
  • Figure 7-11: Delta Voltages and Line Current Relay Phasor Diagram           233
  • Figure 7-12: Open-Delta Voltage and Line Current Relay Phasor Diagram Comparison      235
  • Figure 7-13: Old Open-Delta PT Connections with Correct Angles               236
  • Figure 7-14: Power Formulas      237
  • Figure 7-15: Three-Phase Power Calculation        238
  • Figure 7-16: Site Schematic Drawing for Beckwith M-3425A          243
  • Figure 7-17: Site Schematic Drawing for SEL-300G              244
  • Figure 7-18: SELogic Control Equation Variables Logic       245
  • Figure 7-19: Site Schematic Drawing for SEL-300G              246
  • Figure 9-1: Generator Phase Distance Zones of Protection            257
  • Figure 9-2: Generator Phase Distance Impedance Diagram           258
  • Figure 9-3: Plotting MHO Characteristic Curves   262
  • Figure 9-4: SEL-300G MHO Logic                264
  • Figure 9-5: SEL-300G TR1/TRIP1 Logic      265
  • Figure 9-6: Example Relay Generator Phase Distance Impedance Diagram             267
  • Figure 9-7: Three-Phase Impedance Timing Test Calculations       268
  • Figure 9-8: Zone-1 Three-Phase Impedance Timing Test Plan       270
  • Figure 9-9: Zone-1 Breaker Status Blocking Test 273
  • Figure 9-10: SEL-300G 3PO Blocking Logic               273
  • Figure 9-11: Zone-1 Loss of Potential Blocking Test           275
  • Figure 9-12: Three-Phase Impedance Timing Test Calculations    276
  • Figure 9-13: Revised Three-Phase Impedance Timing Test Calculations   276
  • Figure 9-14: Zone-2 Three-Phase Impedance Timing Test Plan    278
  • Figure 9-15: Zone-2 Breaker Status Blocking Test               280
  • Figure 9-16: Zone-2 Loss of Potential Blocking Test           282
  • Figure 9-17: Multi-Zone-21-Element Dynamic Test Plan  284
  • Figure 9-18: Zone-1 Three-Phase Impedance 95% Dynamic Test Plan       285
  • Figure 9-19: Zone-1 Three-Phase Impedance 105% Dynamic Test Plan     288
  • Figure 9-20: Zone-1 Three-Phase Impedance 95% Dynamic Test Plan – Revised   290
  • Figure 9-21: Zone-1 Three-Phase Impedance 105% Dynamic Test Plan – Revised 292
  • Figure 9-22: Zone-2 Three-Phase Impedance 95% Dynamic Test Plan       294
  • Figure 9-23: Zone-1 Three-Phase Impedance 105% Dynamic Test Plan     296
  • Figure 9-24: MTA Pulsing Pickup Test Plan and Parameters           298
  • Figure 9-25: MTA Pulse MTA MHO Characteristic               299
  • Figure 9-26: MTA Pulsing Pickup Test Plan and Parameters           300
  • Figure 9-27: MTA Pulsing Pickup Test Plan and Parameters           301
  • Figure 9-28: MTA Pulse MTA Test with Incorrect MHO Characteristic        301
  • Figure 9-29: Phase-Phase Impedance Calculation              303
  • Figure 9-30: Phase-Phase Impedance Calculation              304
  • Figure 9-31: Phase-Phase Impedance Calculation              305
  • Figure 10-1: Over-Excitation TCC Curve  308
  • Figure 10-2: SEL-300G Over-Excitation Characteristic Using Measured V/Hz           315
  • Figure 10-3: SEL-300G Over-Excitation Characteristic with Multiple of Pickup V/Hz             316
  • Figure 10-4: V/Hz Formulas          316
  • Figure 10-5: M-3425A Over-Excitation Characteristic Using Per Unit V/Hz               317
  • Figure 10-6: M-3425A Over-Excitation Characteristic Using Per Unit V/Hz               318
  • Figure 10-7: Calculate Phase-Phase Nominal V/Hz             319
  • Figure 10-8: Calculate Phase-Neutral Nominal V/Hz          320
  • Figure 10-9: Calculate Test V/Hz from V/Hz Setting and Test Multiple       321
  • Figure 10-10: Calculate Applied V/Hz from Test V/Hz       321
  • Figure 10-11: Calculate Applied Voltage with Fixed Frequency     322
  • Figure 10-12: Calculate M-3425A 24-Inverse Time Delay with Inverse Curve #1    323
  • Figure 10-13: M-3425A 24-Element Inverse Curve #2       325
  • Figure 10-14: Calculate M-3425A 24-Inverse Time Delay with Inverse Curve #2    326
  • Figure 10-15: Calculate SEL-300 24-Inverse Time Delay with 24IC=1 Using Official Formula               327
  • Figure 10-16: Calculate SEL-300G 24-Inverse Time Delay with 24IC=1        328
  • Figure 10-17: 24-Inverse Over-Excitation Timing Test Plan #1       329
  • Figure 10-18: 24-Inverse Over-Excitation Timing Test Plan #2       334
  • Figure 10-19: 24-Inverse Reset Time Test Plan #1              340
  • Figure 10-20: 24-Inverse Reset Time Test Plan #2              343
  • Figure 10-21: 24-Definite Time Over-Excitation Timing Test Plan 346
  • Figure 10-22: 24-Definite Time Loss of Potential Blocking Test      349
  • Figure 10-23: 24-Definite Time Loss of Potential Blocking Test      351
  • Figure 10-24: Generic Pickup Test Plan and Parameters  352
  • Figure 10-25: Pickup Test Plan and Parameters   355
  • Figure 10-26: 24-Inverse Pickup Test Plan              356
  • Figure 10-27: 24-Definite Time Over-Excitation Timing Test Plan 360
  • Figure 10-28: 24-Definite Time Over-Excitation Timing Test Plan 364
  • Figure 10-29: Calculate Maximum Frequency for Specified Test Voltage During 24-Element Test 366
  • Figure 10-30: Calculate Maximum Applied V/Hz with no Interactions        368
  • Figure 10-31: Actual V/Hz Curve with Example Settings   369
  • Figure 11-1: Sync-Check (25) Three-Line Drawing              373
  • Figure 11-2: Basler BE1-25 Style Number Option Chart    375
  • Figure 11-3: Basler BE1-25 Three-Line Drawing    376
  • Figure 11-4: Basler BE1-25 DC Schematic                377
  • Figure 11-5: Sync-Check (25) DC Schematic           378
  • Figure 11-6: Calculate Maximum Slip with Phase Angle and Time Delay Settings  382
  • Figure 11-7: Calculating the 25RCF Compensation factor 383
  • Figure 11-8: Three-Line Drawing with Different PT Ratios and Aux PT       384
  • Figure 11-9: Three-Line Drawing with Different PT Ratios and Compensation Factor          384
  • Figure 11-10: Under-Voltage and Not-Over-Voltage Sync-Check Characteristic    388
  • Figure 11-11: Delta-V Sync-Check Characteristic 389
  • Figure 11-12: Phase Angle Characteristic                390
  • Figure 11-13: SEL-300G Actual Phase Angle Window Calculation  390
  • Figure 11-14: Actual Phase Angle Window Calculation Using Delta-V         391
  • Figure 11-15: Calculate Expected Time Based on Slip Frequency 393
  • Figure 11-16: Single-Phase Synchronizing Connections    395
  • Figure 11-17: Single Phase Synchronizing Connections    395
  • Figure 11-18: Universal Phase Synchronizing Connections             396
  • Figure 11-19: Test-Set vs. Power System Voltages            396
  • Figure 11-20: 25-Element Sync-Check Timing Test Plan    398
  • Figure 11-21: Phase Angle Pickup Test Plan and Parameters         399
  • Figure 11-22: 25-Element Sync-Check Delta-V Test Plan  402
  • Figure 11-23: 25-Element Live Line / Not-Under-Voltage Test Plan and Parameters           404
  • Figure 11-24: 25-Element Live Bus / Not-Under-Voltage Test Plan and Parameters            406
  • Figure 11-25: 25-Element Line Not-Over-Voltage Test Plan and Parameters          407
  • Figure 11-26: 25-Element Live Bus / Not-Under-Voltage Test Plan and Parameters            409
  • Figure 11-27: 25-Element Sync-Check LL/LB, LL/DB, DL/LB, and DLDB Test Plan     411
  • Figure 11-28: 25-Element Sync-Check 52a Blocking Test Plan        412
  • Figure 11-29: 25-Element Synchronizing Test Plan Template         415
  • Figure 11-30: Calculate Time Delay to Determine 25-Element Synchronizing Angle             417
  • Figure 11-31: 25-Element Phase Angle Test Plan                418
  • Figure 11-32: Calculate 25-Element Phase Angle Window with Time         420
  • Figure 11-33: 25-Element Maximum Voltage Difference No-Op Test Plan               422
  • Figure 11-34: 25-Element Maximum Voltage Difference Op Test Plan      423
  • Figure 11-35: 25-Element Voltage Window, Low Threshold Setting No-Op Test Plan          425
  • Figure 11-36: 25-Element Voltage Window, Low Threshold Setting Op Test Plan 426
  • Figure 11-37: 25-Element Voltage Window, High Threshold Setting No-Op Test Plan         427
  • Figure 11-38: 25-Element Voltage Window, Low Threshold Setting Op Test Plan 428
  • Figure 11-39: 25-Element Minimum Slip Frequency Setting No-Op Test Plan         430
  • Figure 11-40: 25-Element Voltage Window, Low Threshold Setting Op Test Plan 431
  • Figure 11-41: 25-Element Maximum Slip Frequency Setting No-Op Test Plan        433
  • Figure 11-42: 25-Element Maximum Slip Frequency Setting Op Test Plan                434
  • Figure 11-43: 25-Element Gen Voltage > Buss Voltage Setting No-Op Test Plan   435
  • Figure 11-44: 25-Element Gen Voltage > Buss Voltage Setting Op Test Plan           436
  • Figure 11-45: 25-Element Circuit Breaker Closed Setting Op Test Plan       437
  • Figure 11-46: 25-Element Ramping Phase Angle Test Plan              440
  • Figure 11-47: Synchronizing Three-Line Drawing with Wye PTs    441
  • Figure 11-48: Synchronizing Phasor Drawing with Wye PTs            442
  • Figure 11-49: Synchronizing Voltage Channels to Apply with Wye PTs      443
  • Figure 11-50: Synchronizing Voltage Channels to Apply with Open-Delta PTs        443
  • Figure 11-51: Synchronizing Phasor Drawing with Delta PTs           444
  • Figure 11-52: Synchronizing Voltage Channels to Apply with Delta PTs     444
  • Figure 11-53: Synchronizing Voltage Channels to Apply with Wye PTs and Different PT Ratios       445
  • Figure 11-54: Synchronizing Voltage Channels to Apply with Open-Delta PTs and Different PT Ratios        446
  • Figure 11-55: Calculate Voltages for Tests with Different PT Ratios Using Buss Reference               447
  • Figure 11-56: Generator Step Up Transformer Phasing   448
  • Figure 11-57: Synchronizing Voltage Channels to Apply with Open-Delta PTs and GSU Transformer           449
  • Figure 11-58: Synchronizing Voltage Channels to Apply with Open-Delta PTs and GSU Transformer           450
  • Figure 11-59: Calculate Voltages for Tests with GSU Transformer               451
  • Figure 11-60: Old Open-Delta PT Connections     452
  • Figure 11-61: Use Three Test-Set Channels to Simulate Three Delta Voltages and a Sync Voltage                453
  • Figure 11-62: Use Three Test-Set Channels to Simulate Three Wye Voltages and a Sync Voltage 453
  • Figure 11-63: Expected Relay Measurements with Three Test-Set Sources Creating Four Voltages             454
  • Figure 11-64: Actual Relay Measurements with Three Test-Set Sources Creating Four Voltages   454
  • Figure 11-65: Six-Voltage Voltage-Balance VAB Test Connection with Three Test-Set Voltages     455
  • Figure 11-66: Six-Voltage Voltage-Balance VBC Connection with Three Test-Set Voltages               455
  • Figure 12-1: NERC Generator Voltage Ride-Through Voltage Requirements          457
  • Figure 12-2: 27-Element Characteristics  463
  • Figure 12-3: Calculate P-N Magnitudes for a P-P Fault      464
  • Figure 12-4: Calculate P-N Voltage Angles for an A-B Fault             465
  • Figure 12-5: 27-Element A-B Timing Test Plan      467
  • Figure 12-6: 27-Element A-B No-Op Test Plan      469
  • Figure 12-7: 27-Element Breaker Status Blocking Test      471
  • Figure 12-8: 27-Element Loss of Potential Blocking Test  473
  • Figure 12-9: Calculate P-N Voltage Angles for an B-C Fault             474
  • Figure 12-10: 27-Element B-C Timing Test Plan    475
  • Figure 12-11: Calculate P-N Voltage Angles for a C-A Fault             476
  • Figure 12-12: 27-Element C-A Timing Test Plan    478
  • Figure 12-13: Calculate P-N Voltage Angles for an Three-Phase Fault        478
  • Figure 12-14: 27-Element Three-Phase Timing Test Plan 480
  • Figure 12-15: 27-Element A-B Timing Test Plan    480
  • Figure 13-1: 100% Stator Earth Protection Scheme Under Normal Conditions       483
  • Figure 13-2: 100% Stator Earth Protection Scheme With Ground Fault at Output 484
  • Figure 13-3: 100% Stator Earth Protection Scheme With Ground Fault at Neutral                484
  • Figure 13-4: 27TN Characteristic 493
  • Figure 13-5: 27TN-Element Timing Test Plan         496
  • Figure 13-6: 27TN-Element No-Op Test Plan        498
  • Figure 13-7: 27TN-Element Under-Voltage Blocking Test                499
  • Figure 14-1: Per Unit Watt Formula          503
  • Figure 14-2: Phasor and P-Q Diagram Under Normal Operating Conditions            510
  • Figure 14-3: Phasor and P-Q Diagram Under Normal Forward Power Test Conditions        510
  • Figure 14-4: Phasor and P-Q Diagram Under Normal Reverse Power Test Conditions        510
  • Figure 14-5: Reverse Power Characteristic            511
  • Figure 14-6: Low-Forward Power Characteristic  511
  • Figure 14-7: 32-Element Timing Test Plan              514
  • Figure 14-8: 32-Element No-Op Test Plan              517
  • Figure 14-9: 32-Element Loss of Potential Blocking Test  519
  • Figure 14-10: 32-Element Timing Test Plan            520
  • Figure 14-11: 32-Element High Current Calculation            521
  • Figure 14-12: 32-Element High Current Test Phasor and PQ Diagram         521
  • Figure 15-1: Normal Generator Phasor, PQ, and Impedance Diagrams     523
  • Figure 15-2: Generator Phasor, PQ, and Impedance Diagrams with 0 VARs            523
  • Figure 15-3: Generator Phasor, PG, and Impedance Diagrams with Negative VARs            524
  • Figure 15-4: Generator Phasor, PG, and Impedance Diagram at Stable Loss-of-Field Condition     524
  • Figure 15-5: Standard 40-Element Characteristic                526
  • Figure 15-6: Dual 40-Element Characteristic          526
  • Figure 15-7: Dual 40-Element Characteristic with Capability Curves            527
  • Figure 15-8: Dual 40-Element Characteristic with Capability Curves            527
  • Figure 15-9: Dual 40-Element Characteristic with Positive Offset 528
  • Figure 15-10: M-3425A Loss-of-Field (40) – Protective Approach 1              531
  • Figure 15-11: M-3425A Loss-of-Field (40) – Protective Approach 2              531
  • Figure 15-12: SEL-300G  Loss-of-Field Element Operating Characteristic, Negative Zone 2 Offset 531
  • Figure 15-13: SEL-300G Loss-of-Field Element Operating Characteristic, Positive Zone 2 Offset     531
  • Figure 15-14: 40-Element Operating Characteristic with Center and Radius Settings           532
  • Figure 15-15: 40-Element Characteristic with Example Center and Radius Settings              532
  • Figure 15-16: Example Relay Loss-of-Field Protection Characteristic          537
  • Figure 15-17: 40#2-Element Timing Test Plan       540
  • Figure 15-18: 40#2-Element No-Op Test Plan       542
  • Figure 15-19: 40#1-Element Timing Test Plan       545
  • Figure 15-20: 40#1-Element No-Op Test Plan       546
  • Figure 15-21: 40-Element Offset Timing Test Plan              548
  • Figure 15-22: 40-Element Offset No-Op Test Plan              550
  • Figure 15-23: 40#1-Element Open Breaker Blocking Test Plan      552
  • Figure 15-24: 40-Element Loss-of-Potential Blocking Test               554
  • Figure 15-25: Testing 40-Elements at Different MTAs       555
  • Figure 16-1: Negative-Sequence Calculation        558
  • Figure 16-2: Simplified Negative-Sequence Current Calculation  559
  • Figure 16-3: 46-Element Timing Characteristic     561
  • Figure 16-4: 46-Element Characteristics  568
  • Figure 16-5: 46-Inverse Timing Test Plan                573
  • Figure 16-6: 46-Alarm Timing Test Plan   576
  • Figure 16-7: 46-Alarm No-Op Test Plan   579
  • Figure 16-8: 46-Inverse Pickup Test Plan and Parameters               582
  • Figure 16-9: 46-Inverse Pickup Test Plan                584
  • Figure 17-1: M-3425A 50/27-Element Logic           597
  • Figure 17-2: SEL-300G Inadvertent-Energization Element Logic    598
  • Figure 17-3: M-3425A Single line Drawing              600
  • Figure 17-4: Inadvertent-Energization Test Plan 603
  • Figure 17-5: Inadvertent-Energization Under-Voltage Setpoint No-Op Test Plan 605
  • Figure 17-6: Inadvertent-Energization Pickup Time No-Op Test Plan         607
  • Figure 17-7: Inadvertent-Energization Drop-Out Time Test Plan  609
  • Figure 17-8: Inadvertent-Energization Drop-Out No-Op Test Plan              611
  • Figure 18-1: Simple Generator Plant Single Line Drawing                615
  • Figure 18-2: Simple Generator Plant Single Line Drawing during Fault       615
  • Figure 18-3: Simple Generator Plant Single Line Drawing after Fault          616
  • Figure 18-4: Simple Generator Plant Single Line Drawing When a Circuit Breaker Fails       616
  • Figure 18-5: Simple Generator Plant Single Line Drawing after a Circuit Breaker Fails         617
  • Figure 18-6: Simple Generator Plant Single Line Drawing after Breaker Fail Protection Operates  617
  • Figure 18-7: Ring Buss System for Generator Plant under Normal Conditions        618
  • Figure 18-8: Ring Buss System for Generator Plant during Fault   618
  • Figure 18-9: Ring Buss System for Generator Plant after Fault Isolation   619
  • Figure 18-10: Ring Buss System for Generator Plant during a Breaker Fail Condition           619
  • Figure 18-11: Ring Buss System for Generator Plant after Breaker Fail Condition 620
  • Figure 18-12: Breaker-and-a-Half Scheme for Generator Plant    620
  • Figure 18-13: Breaker-and-a-Half Scheme for Generator Plant with Fault Current              621
  • Figure 18-14: Breaker-and-a-Half Scheme for Generator Plant after Fault              621
  • Figure 18-15: Breaker-and-a-Half Scheme after Breaker Fail on Half Circuit Breaker           621
  • Figure 18-16: Breaker-and-a-Half Scheme after Breaker Fail on Dedicated Circuit Breaker              622
  • Figure 18-17: Simple Breaker Fail Logic    622
  • Figure 18-18: Simple Breaker Fail Logic with Current Detectors    624
  • Figure 18-19: M-3425A Manufacturer’s Single Line Drawing          631
  • Figure 18-20: M-3425A Breaker Failure Logic        635
  • Figure 18-21: SEL-300G Breaker Fail Element Logic             636
  • Figure 18-22: Normal Trip Event 638
  • Figure 18-23: Breaker Fail Element Test – Part 1 639
  • Figure 18-24: Breaker Fail Element Test – Part 2 640
  • Figure 18-25: M-3425A Configuration Matrix        641
  • Figure 18-26: 50BF-Element Timing Test Plan       645
  • Figure 18-27: Breaker Fail No-Op Test Plan           648
  • Figure 18-28: Breaker Fail No-Op Test Plan with Current 650
  • Figure 18-29: Breaker Fail Timing Test Plan with Current 652
  • Figure 18-30: Breaker Fail Timing Test Plan with Current Using Alternate BFI         654
  • Figure 19-1: IEEE Extremely Inverse Curve Timing Calculations     667
  • Figure 19-2: SEL U.S. Extremely Inverse Curve: U4 Curve Timing Calculations        668
  • Figure 19-3: M-3425A 51VC-Element Characteristics when V > 87.00VP-P               669
  • Figure 19-4: M-3425A 51VC-Element Characteristics when V < 87.00VP-P               669
  • Figure 19-5: SEL-300G 51VC-Element Characteristics when V1 > 50.30VP-N           670
  • Figure 19-6: SEL-300G 51VC-Element Characteristics when V1 < 50.30V1P-N         670
  • Figure 19-7: 51VC-Element 3x Timing Test Plan   674
  • Figure 19-8: 51VC-Element 4x Timing Test Plan   678
  • Figure 19-9: 51VC-Element 6x Timing Test Plan   680
  • Figure 19-10: 51VC-Element Voltage Control No-Op Test Plan     682
  • Figure 19-11: 51VC-Element Loss-of-Potential Blocking Test         685
  • Figure 19-12: 51VC-Element Open Breaker Blocking Test Plan      687
  • Figure 19-13: 51VC-Inverse Pickup Test Plan and Parameters       689
  • Figure 19-14: 51VC-Inverse Pickup Test Plan        690
  • Figure 20-1: 51VR-Element Pickup Characteristics              695
  • Figure 20-2: 51VR-Element Pickup Characteristics at Various Test Points 696
  • Figure 20-3: Calculate 51VR-Element Slope           697
  • Figure 20-4: Calculate Actual M-3425A 51VR-Pickup at Any Voltage on Slope        698
  • Figure 20-5: Calculate Actual M-3425 51VR-Pickup at Any Voltage on Slope           698
  • Figure 20-6: IEEE Extremely Inverse Curve Timing Calculations     704
  • Figure 20-7: SEL U.S. Extremely Inverse Curve: U4 Curve Timing Calculations        705
  • Figure 20-8: M-3425A Traditional 51VR-Element Characteristics and Test Plan      707
  • Figure 20-9: M-3425A 51VR-Element Characteristics and Test Plan             707
  • Figure 20-10: Universal Formula to Calculate Percent Voltage to Apply for Any Test Multiple        707
  • Figure 20-11: Calculate Percent Voltage to Apply for Any Test Multiple in a M-3425A Relay            708
  • Figure 20-12: SEL-300G Traditional 51VR-Element Characteristics and Test Plan    708
  • Figure 20-13: SEL-300G 51VR-Element Characteristics and Test Plan          708
  • Figure 20-14: Universal Formula to Calculate Per Unit Voltage to Apply for Any Test Multiple        709
  • Figure 20-15: Calculate Percent Voltage to Apply for Any Test Multiple in a SEL-300G Relay            709
  • Figure 20-16: Calculate Test Multiples Using for Specific Time Delays        711
  • Figure 19-17: 51VR-Inverse Pickup Test Plan and Parameters       714
  • Figure 20-18: 51VR-Inverse Pickup Test Plan        715
  • Figure 20-19: 51VR-Element Timing Test Plan      719
  • Figure 20-20: 51VR-Element 3.0000x Timing Test Plan      723
  • Figure 20-21: Third 51VR-Element Timing Test Plan           725
  • Figure 20-22: 51VR-Element Loss-of-Potential Blocking Test         727
  • Figure 20-23: 51VR-Element Open Breaker Blocking Test Plan      729
  • Figure 21-1: NERC Generator Voltage Ride-Through Voltage Requirements (Same as 12-1)           733
  • Figure 21-2: 59-Element Characteristics  740
  • Figure 12-3: 59#1 / 59PP1-Element Timing Test Plan         743
  • Figure 12-4: 59#1 / 59PP1-Element No-Op Test Plan         746
  • Figure 12-5: 59#2 / 59PP2-Element Timing Test Plan         748
  • Figure 12-6: 59#2 / 59PP2-Element No-Op Test Plan         750
  • Figure 22-1: Three-Phase Generator Current Paths          756
  • Figure 22-2: Maximum Applied 59N Voltage Formula       758
  • Figure 22-3: 59N Voltage Pickup Setting Formula               758
  • Figure 22-4: 59N Characteristic   758
  • Figure 22-5: Calculate Stator Coverage with 59N Settings               760
  • Figure 22-6: 59N Characteristic   762
  • Figure 22-7: 59N-Element Timing Test Plan           764
  • Figure 22-8: 59N-Element No-Op Test Plan           766
  • Figure 23-1: Voltage-Balance Relay with Wye Connected PTs       769
  • Figure 23-2: Voltage-Balance Relay with Open-Delta Connected PTs        769
  • Figure 23-3: Voltage-Balance Relay Connections with Four Voltage Channels       770
  • Figure 23-4: Voltage-Balance Relay Connections with Three Voltage Channels     771
  • Figure 23-5: Voltage-Balance Relay Connections with Four Voltage Channels       772
  • Figure 23-6: M-3425A VT Fuse-Loss Detection Logic          775
  • Figure 23-7: 60-Element Single-Phase Loss-of-Potential Timing Test         781
  • Figure 23-8: 60-Element Three-Phase Loss-of-Potential Timing Test         783
  • Figure 24-1: Steady-State Response to Load Change        787
  • Figure 24-2: Transient-State Response to Load Change   788
  • Figure 24-3: Universal Power Transfer Formula  788
  • Figure 24-4: Universal Power Transfer Formula  789
  • Figure 24-5: Parallel Line Configuration   791
  • Figure 24-6: Typical Power Angle Graphs               791
  • Figure 24-7: Circuit Breaker States During Transient Response     793
  • Figure 24-8: Power Factor Angle Characteristic of a Transient Response  794
  • Figure 24-9: Characteristic of a Failed Transient Response Caused by Too Much Initial Power Flow             795
  • Figure 24-10: Characteristic of a Failed Transient Response Caused by Too Much Initial Power Flow           796
  • Figure 24-11: Graph of Equipment Impedances  797
  • Figure 24-12: Graph of Out-Of-Step Swing Line  798
  • Figure 24-13: Calculate MHO Circle for Single-Blinder 78-Element               799
  • Figure 24-14: Calculate Blinder Resistance for Single-Blinder 78-Element                800
  • Figure 24-15: Single-Blinder 78-Element Characteristic    801
  • Figure 24-16: Normal Fault Simulation through Single-Blinder 78-Element Characteristic  802
  • Figure 24-17: Different Power Angle Responses to Different Fault Clearing Times              803
  • Figure 24-18: Case 1 Impedance Plot       803
  • Figure 24-19: Case 2 Impedance Plot       804
  • Figure 24-20: Case 3 Impedance Plot       804
  • Figure 24-21: Real-Life 78-Swing vs. Impedance Test 78-Swing    806
  • Figure 24-22: Comtrade Waveform of a 78-Swing Impedance Test.           807
  • Figure 24-23: Comtrade Waveform of an Out-of-Step Event        807
  • Figure 24-24: Comtrade Waveform of an Frequency-Based 78-Test          808
  • Figure 24-25: M-3425A Example Relay 78-Characteristic  816
  • Figure 24-26: SEL-300G Example Relay 78-Characteristic 817
  • Figure 24-27: 40-Element and 78-Element Characteristics              818
  • Figure 24-28: 78-Element Test Characteristics      819
  • Figure 24-29: Calculate the 78-Blinder Reactance at the 78-MHO                821
  • Figure 24-30: Calculate the 78-Element Test MHO Entry Angle     822
  • Figure 24-31: Calculate Where the Test Impedance Touches Blinder 1     823
  • Figure 24-32: 78-Element Test Characteristic        824
  • Figure 24-33: 78-Element Test Characteristic with 40-Element     826
  • Figure 24-34: Calculate the 40-Element Test MHO Entry and Exit Angles  828
  • Figure 24-35: Calculate the Minimum 78-Swing Rate that will Prevent the 40-Element from Operating     828
  • Figure 24-36: Calculate the Maximum 78-Swing Ramp Rate           828
  • Figure 24-37: 78-Ramp Settings for Common Test-Sets   831
  • Figure 24-38: 78-Element Test Plan          833
  • Figure 24-39: 78-Element Test Plan Ramp Settings with Standard CT Connections               833
  • Figure 24-40: 78-Element Test Plan Ramp Settings with Non-Standard CT Connections    834
  • Figure 24-41: 78-Element Loss-of-Potential Blocking Test               837
  • Figure 24-42: 78-Element LOP Blocking Test Plan Ramp Settings with Standard CT Connections    837
  • Figure 24-43: 78-Element LOP Blocking Test Plan Ramp Settings with Non-Standard CT Connections          837
  • Figure 24-44: Calculate Test Time From 78-Test Start to 40-Element Pickup            838
  • Figure 24-45: 78-Element No Op Test Plan            840
  • Figure 24-46: 78-Element No Op Test Plan Ramp Settings with Standard CT Connections 840
  • Figure 24-47: 78-Element No Op Test Plan Ramp Settings with Non-Standard CT Connections      840
  • Figure 25-1: Frequency Damage Curve for Generator Turbine     846
  • Figure 25-2: Frequency Protection and Damage Curve for Generator Turbine      846
  • Figure 25-3: NERC Standard PRC-024-2 Frequency Setpoint Standards     848
  • Figure 25-4: NERC Standard PRC-024-2 Frequency Setpoint Standards, Turbine Damage Curve, and 81-Element Settings 848
  • Figure 25-5: NERC Standard PRC-024-2 Frequency Setpoint Standards, Turbine Damage Curve, and Revised 81-Element Settings                849
  • Figure 25-6: Realistic Under-Frequency Event vs. Typical Under-Frequency Test 850
  • Figure 25-7: Calculate Expected Time to Setpoint Using 81-Element Ramping Timing Test               852
  • Figure 25-8: 81-Element Characteristics and Test Points  860
  • Figure 25-9: 81U1-Element Dynamic Pickup/Timing Test Plan       865
  • Figure 25-10: 81U1-Element Breaker Status Blocking Test Plan    868
  • Figure 25-11: 81U2-Element Dynamic Pickup/Timing Test Plan     872
  • Figure 25-12: 81U2-Element Breaker Status Blocking Test Plan    875
  • Figure 25-13: 81O1-Element Dynamic Pickup/Timing Test Plan     878
  • Figure 25-14: 81O1-Element Breaker Status Blocking Test Plan    881
  • Figure 25-15: 81O2-Element Dynamic Pickup/Timing Test Plan     884
  • Figure 25-16: 81O2-Element Dynamic Pickup/Timing Test Plan with Open Circuit Breaker                887
  • Figure 26-1: Simple Single-Phase Differential Zone of Protection                891
  • Figure 26-2: Differential Characteristic Curve       892
  • Figure 26-3: Universal Slope Formula      893
  • Figure 26-4: Drawing the SEL-300G Differential Characteristic Curve with Recommended Settings              894
  • Figure 26-5: SEL-300G Differential Characteristic Curve with Recommended Settings        894
  • Figure 26-6: SEL-300G Differential Characteristic Curve with Recommended Settings        898
  • Figure 26-7: Example M-3425A Differential Characteristic Curve 903
  • Figure 26-8: Example SEL-300G Differential Characteristic Curve 905
  • Figure 26-9: 87-Element Minimum Pickup/Timing Test Plan          909
  • Figure 26-10: 87-Element Minimum Pickup/Timing Test Plan        912
  • Figure 26-11: Calculate Expected IOP for 87-Element Slope 1 Test              914
  • Figure 26-12: Slope 1 Formulas for the M-3425A 87-Element Slope 1 Test               914
  • Figure 26-13: Slope 1 Test Current Calculations for the M-3425A 87-Element Slope 1 Test               915
  • Figure 26-14: Determine No-Op Test Current and Timing Test Current for Slope Tests      916
  • Figure 26-15: Calculate Applied Current in Amps from Per Unit Values     918
  • Figure 26-16: 87-Element Slope 1 Pickup/Timing Test Plan             921
  • Figure 26-17: Second 87-Element Slope 1 Pickup/Timing Test Plan             926
  • Figure 26-18: 87-Element Slope 2 Pickup/Timing Test Plan             933
  • Figure 26-19: Single-Phase Connections for Maximum Current   940
  • Figure 26-20: Single-Phase 87-Element Slope 2 Pickup/Timing Test Plan  942
  • Figure 26-21: A-Phase 87-Element Timing Test Plan          945
  • Figure 26-22: B-Phase 87-Element Timing Test Plan          947
  • Figure 26-23: C-Phase 87-Element Timing Test Plan          948
  • Figure 26-24: 87U-Element Pickup/Timing Test Plan         952
  • Figure 27-1: Virtual Instantaneous / On-Delay / Off-Delay Relay Logic (SEL SV#)  958
  • Figure 27-2: Virtual Latching Relay Logic (SEL LT#)              967
  • Figure 29-1: Element vs. Logic. vs. Reporting Setting Comparison               993

About the Author Chris Werstiuk

Chris is an Electrical Engineering Technologist, a Journeyman Power System Electrician, and a Professional Engineer. He is also the Author of The Relay Testing Handbook series and founder of Valence Electrical Training Services. You can find out more about Chris here.

follow me on:

Leave a Comment:

Send this to a friend